ﻻ يوجد ملخص باللغة العربية
We derive the conservative dynamics of non-spinning binaries to third Post-Minkowskian order, using the Effective Field Theory (EFT) approach introduced in [2006.01184] together with the Boundary-to-Bound dictionary developed in [1910.03008, 1911.09130]. The main ingredient is the scattering angle, which we compute to ${cal O}(G^3)$ via Feynman diagrams. Adapting to the EFT framework powerful tools from the amplitudes program, we show how the associated (master) integrals are bootstrapped to all orders in velocities via differential equations. Remarkably, the boundary conditions can be reduced to the same integrals that appear in the EFT with Post-Newtonian sources. For the sake of comparison, we reconstruct the Hamiltonian and the classical limit of the scattering amplitude. Our results are in perfect agreement with those in Bern et al. [1901.04424, 1908.01493].
We present the contribution from potential interactions to the dynamics of non-spinning binaries to fourth Post-Minkowskian (4PM) order. This is achieved by computing the scattering angle to ${cal O}(G^4)$ using the effective field theory approach an
We develop an Effective Field Theory (EFT) formalism to solve for the conservative dynamics of binary systems in gravity via Post-Minkowskian (PM) scattering data. Our framework combines a systematic EFT approach to compute the deflection angle in th
Building upon the worldline effective field theory (EFT) formalism for spinning bodies developed for the Post-Newtonian regime, we generalize the EFT approach to Post-Minkowskian (PM) dynamics to include rotational degrees of freedom in a manifestly
Using the Effective Field Theory approach together with the Boundary-to-Bound map, we compute the next-to-leading order (NLO) Post-Minkowskian (PM) tidal effects in the conservative dynamics of compact binary systems. We derive the mass and current q
We study the Post-Minkowskian (PM) and Post-Newtonian (PN) expansions of the gravitational three-body effective potential. At order 2PM a formal result is given in terms of a differential operator acting on the maximal generalized cut of the one-loop