ترغب بنشر مسار تعليمي؟ اضغط هنا

Hawking Radiation Correlations of Evaporating Black Holes in JT Gravity

72   0   0.0 ( 0 )
 نشر من قبل Timothy J. Hollowood
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the Hawking radiation emitted by an evaporating black hole in JT gravity and compute the entropy of arbitrary subsets of the radiation in the slow evaporation limit, and find a zoo of possible island saddles. The Hawking radiation is shown to have long range correlations. We compute the mutual information between early and late modes and bound from below their squashed entanglement. A small subset of late modes are shown to be correlated with modes in a suitably large subset of the radiation previously emitted as well as later modes. We show how there is a breakdown of the semi-classical approximation in the form of a violation of the Araki-Lieb triangle entropy inequality, if the interior of the black hole and the radiation are considered to be separate systems. Finally, we consider how much of the radiation must be collected, and how early, to recover information thrown into the black hole as it evaporates.



قيم البحث

اقرأ أيضاً

The effect of a CFT shockwave on the entanglement structure of an eternal black hole in Jackiw-Teitelboim gravity, that is in thermal equilibrium with a thermal bath, is considered. The shockwave carries energy and entropy into the black hole and hea ts the black hole up leading to evaporation and the eventual recovery of equilibrium. We find an analytical description of the entire relaxational process within the semiclassical high temperature regime. If the shockwave is inserted around the Page time then several scenarios are possible depending on the parameters. The Page time can be delayed or hastened and there can be more than one transition. The final entropy saddle has a quantum extremal surface that generically starts inside the horizon but at some later time moves outside. In general, increased shockwave energy and slow evaporation rate favour the extremal surface to be inside the horizon. The shockwave also disrupts the scrambling properties of the black hole. The same analysis is then applied to a shockwave inserted into the extremal black hole with similar conclusions.
307 - S. Giovanazzi 2004
I present a microscopic description of Hawking radiation in sonic black holes. A one-dimensional Fermi-degenerate liquid squeezed by a smooth barrier forms a transonic flow, a sonic analogue of a black hole. The quantum treatment of the non-interacti ng case establishes a close relationship between the Hawking radiation and quantum tunnelling through the barrier. Quasi-particle excitations appear at the barrier and are then radiated with a thermal distribution in exact agreement with Hawkings formula. The signature of the radiation can be found in the dynamic structure factor, which can be measured in a scattering experiment. The possibility for experimental verification of this new transport phenomenon for ultra-cold atoms is discussed.
Hawking radiation of uncharged and charged scalars from accelerating and rotating black holes is studied. We calculate the tunneling probabilities of these particles from the rotation and acceleration horizons of these black holes. Using the tunnelin g method we recover the correct Hawking temperature as well.
The anomaly cancelation method proposed by Wilczek et al. is applied to the black holes of topologically massive gravity (TMG) and topologically massive gravito-electrodynamics (TMGE). Thus the Hawking temperature and fluxes of the ACL and ACGL black holes are found. The Hawking temperatures obtained agree with the surface gravity formula. Both black holes are rotating and this gives rise to appropriate terms in the effective U(1) gauge field of the reduced (1+1)-dimensional theory. It is found that the terms in this U(1) gauge field correspond exactly to the correct angular velocities on the horizon of both black holes as well as the correct electrostatic potential of the ACGL black hole. So the results for the Hawking fluxes derived here from the anomaly cancelation method, are in complete agreement with the ones obtained from integrating the Planck distribution.
We investigate wave optical imaging of black holes with Hawking radiation. The spatial correlation function of Hawking radiation is expressed in terms of transmission and reflection coefficients for scalar wave modes and evaluated by taking summation over angular qunatum numbers numerically for the Unruh-Hawking state of the Kerr-de Sitter black hole. Then wave optical images of evaporating black hole are obtained by Fourier transformation of the spatial correlation function. For short wavelength, the image of the black hole with the outgoing mode of the Unruh-Hawking state looks like a star with its surface is given by the photon sphere. It is found that interference between incoming modes from the cosmological horizon and reflected modes due to scattering of the black hole can enhance brightness of images in the vicinity of the photon sphere. For long wavelenth, whole field of view becomes bright and emission region of Hawking radiation cannot be identifed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا