ترغب بنشر مسار تعليمي؟ اضغط هنا

Racial Impact on Infections and Deaths due to COVID-19 in New York City

87   0   0.0 ( 0 )
 نشر من قبل James Unwin
 تاريخ النشر 2020
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Redlining is the discriminatory practice whereby institutions avoided investment in certain neighborhoods due to their demographics. Here we explore the lasting impacts of redlining on the spread of COVID-19 in New York City (NYC). Using data available through the Home Mortgage Disclosure Act, we construct a redlining index for each NYC census tract via a multi-level logistical model. We compare this redlining index with the COVID-19 statistics for each NYC Zip Code Tabulation Area. Accurate mappings of the pandemic would aid the identification of the most vulnerable areas and permit the most effective allocation of medical resources, while reducing ethnic health disparities.



قيم البحث

اقرأ أيضاً

113 - J. E. Amaro 2020
We present a simple analytical model to describe the fast increase of deaths produced by the corona virus (COVID-19) infections. The D (deaths) model comes from a simplified version of the SIR (susceptible-infected-recovered) model known as SI model. It assumes that there is no recovery. In that case the dynamical equations can be solved analytically and the result is extended to describe the D-function that depends on three parameters that we can fit to the data. Results for the data from Spain, Italy and China are presented. The model is validated by comparing with the data of deaths in China, which are well described. This allows to make predictions for the development of the disease in Spain and Italy.
COVID-19 has forced quarantine measures in several countries across the world. These measures have proven to be effective in significantly reducing the prevalence of the virus. To date, no effective treatment or vaccine is available. In the effort of preserving both public health as well as the economical and social textures, France and Italy governments have partially released lockdown measures. Here we extrapolate the long-term behavior of the epidemics in both countries using a Susceptible-Exposed-Infected-Recovered (SEIR) model where parameters are stochastically perturbed to handle the uncertainty in the estimates of COVID-19 prevalence. Our results suggest that uncertainties in both parameters and initial conditions rapidly propagate in the model and can result in different outcomes of the epidemics leading or not to a second wave of infections. Using actual knowledge, asymptotic estimates of COVID-19 prevalence can fluctuate of order of ten millions units in both countries.
In late-2020, many countries around the world faced another surge in number of confirmed cases of COVID-19, including United Kingdom, Canada, Brazil, United States, etc., which resulted in a large nationwide and even worldwide wave. While there have been indications that precaution fatigue could be a key factor, no scientific evidence has been provided so far. We used a stochastic metapopulation model with a hierarchical structure and fitted the model to the positive cases in the US from the start of outbreak to the end of 2020. We incorporated non-pharmaceutical interventions (NPIs) into this model by assuming that the precaution strength grows with positive cases and studied two types of pandemic fatigue. We found that people in most states and in the whole US respond to the outbreak in a sublinear manner (with exponent k=0.5), while only three states (Massachusetts, New York and New Jersey) have linear reaction (k=1). Case fatigue (decline in peoples vigilance to positive cases) is responsible for 58% of cases, while precaution fatigue (decay of maximal fraction of vigilant group) accounts for 26% cases. If there were no pandemic fatigue (no case fatigue and no precaution fatigue), total positive cases would have reduced by 68% on average. Our study shows that pandemic fatigue is the major cause of the worsening situation of COVID-19 in United States. Reduced vigilance is responsible for most positive cases, and higher mortality rate tends to push local people to react to the outbreak faster and maintain vigilant for longer time.
One of the key indicators used in tracking the evolution of an infectious disease isthe reproduction number. This quantity is usually computed using the reportednumber of cases, but ignoring that many more individuals may be infected (e.g.asymptomati cs). We propose a statistical procedure to quantify the impact of un-detected infectious cases on the determination of the effective reproduction number. Our approach is stochastic, data-driven and not relying on any compartmentalmodel. It is applied to the COVID-19 case in eight different countries and all Italianregions, showing that the effect of undetected cases leads to estimates of the effective reproduction numbers larger than those obtained only with the reported cases by factors ranging from two to ten. Our findings urge caution about deciding when and how to relax containment measures based on the value of the reproduction number.
In this paper, we deal with the study of the impact of nationwide measures COVID-19 anti-pandemic. We drive two processes to analyze COVID-19 data considering measures. We associate level of nationwide measure with value of parameters related to the contact rate of the model. Then a parametric solve, with respect to those parameters of measures, shows different possibilities of the evolution of the pandemic. Two machine learning tools are used to forecast the evolution of the pandemic. Finally, we show comparison between deterministic and two machine learning tools.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا