ترغب بنشر مسار تعليمي؟ اضغط هنا

Intertwined Magnetic Sub-Lattices in the Double Perovskite Compound LaSrNiReO6

187   0   0.0 ( 0 )
 نشر من قبل Ola Kenji Forslund
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a muon spin rotation ($mu^{+}$SR) study of the magnetic properties of the double perovskite compound LaSrNiReO$_{6}$. Using the unique length and time scales of the $mu^{+}$SR technique, we successfully clarify the magnetic ground state of LaSrNiReO$_{6}$, which was previously deemed as a spin glass state. Instead, our $mu^{+}$SR results point towards a long-range dynamically ordered ground state below $T_{rm C}= 23$ K, for which a static limit is foreseen at $T=0$. Furthermore, between 23 K$<Tleq$300 K, three different magnetic phases are identified: a dense ($23$ K$<Tleq75$ K), a dilute ($75$ K$<Tleq250$ K), and a paramagnetic ($T>250$ K) state. Our results reveal how two separate, yet intertwined magnetic lattices interact within the unique double perovskite structure and the importance of using complementary experimental techniques to obtain a complete understanding of the microscopic magnetic properties of complex materials.



قيم البحث

اقرأ أيضاً

Recent theoretical studies [Chen et al., Phys. Rev. B 82, 174440 (2010), Ishizuka et al., Phys. Rev. B 90, 184422 (2014)] for the magnetic Mott insulator Ba2NaOsO6 have proposed a low-temperature order parameter that breaks lattice rotational symmetr y without breaking time reversal symmetry leading to a nematic phase just above magnetic ordering temperature. We present high-resolution calorimetric and magnetization data of the same Ba2NaOsO6 single crystal and show evidence for a weakly field-dependent phase transition occurring at a temperature of Ts ~ 9.5K, above the magnetic ordering temperature of Tc ~ 7.5K. This transition appears as a broadened step in the low-field temperature dependence of the specific heat. The evolution of the phase boundary with applied magnetic field suggests that this phase coincides with the phase of broken local point symmetry seen in high field NMR experiments [Lu et al., Nat. Comm. 8 14407 (2017)]. Furthermore, the magnetic field dependence of the specific heat provides clear indications for magnetic correlations persisting at temperatures between Tc and Ts where long-range magnetic order is absent giving support for the existence of the proposed nematic phase.
Structural and magnetic transitions in a double perovskite hosting 5d1 Re ions are discussed on the basis of recently published high-resolution x-ray diffraction patterns [D. Hirai, et al., Phys. Rev. Res. 2, 022063(R) (2020)]. A reported structural transition below room temperature, from cubic to tetragonal symmetry, appears not to be driven by T2g-type quadrupoles, as suggested. A magnetic motif at lower temperature is shown to be composed of two order parameters, associated with propagation vectors k = (0, 0, 1) and k = (0, 0, 0). Findings from our studies, for structural and magnetic properties of Ba2MgReO6, surface in predicted amplitudes for x-ray diffraction at rhenium L2 and L3 absorption edges, and magnetic neutron Bragg diffraction. Specifically, entanglement of anapole and spatial degrees of freedom creates a quadrupole in the neutron scattering amplitude. It would be excluded in an unexpected scenario whereby the rhenium atomic state is a manifold. Also, a chiral signature visible in resonant x-ray diffraction will be one consequence of predicted electronic quadrupole and magnetic dipole orders. A model Re wave function consistent with all current knowledge is a guide to electronic and magnetic multipoles engaged in x-ray and neutron diffraction investigations.
The magnetic susceptibility, crystal and magnetic structures, and electronic structure of double perovskite Sr2ScOsO6 are reported. Using both neutron and x-ray powder diffraction we find that the crystal structure is monoclinic P21/n from 3.5 to 300 K. Magnetization measurements indicate an antiferromagnetic transition at TN=92K, one of the highest transition temperatures of any double perovskite hosting only one magnetic ion. Type I antiferromagnetic order is determined by neutron powder diffraction, with an Os moment of only 1.6(1) muB, close to half the spin-only value for a crystal field split 5d electron state with t2g^3 ground state. Density functional calculations show that this reduction is largely the result of strong Os-O hybridization, with spin-orbit coupling responsible for only a ~0.1 muB reduction in the moment.
Sr$_2$FeOsO$_6$ is an insulating double perovskite compound which undergoes antiferromagnetic transitions at 140 K ($T_{N1}$) and 67 K ($T_{N2}$). To study the underlying electronic and magnetic interactions giving rise to this behavior we have perfo rmed inelastic neutron scattering (INS) and resonant inelastic x-ray scattering (RIXS) experiments on polycrystalline samples of Sr$_2$FeOsO$_6$. The INS data reveal that the spectrum of spin excitations remains ungapped below T$_{N1}$, however below T$_{N2}$ a gap of 6.8 meV develops. The RIXS data reveals splitting of the T$_{2g}$ multiplet consistent with that seen in other 5d$^3$ osmium based double perovskites. Together these results suggest that spin-orbit coupling is important for ground state selection in 3d-5d$^3$ double perovskite materials.
B-site ordered A$_2$BBO$_6$ double perovskites have a variety of applications as magnetic materials. Here we show that diamagnetic $d^{10}$ and $d^0$ B cations have a significant effect on the magnetic interactions in these materials. We present a ne utron scattering and theoretical study of the Mn$^{2+}$ double perovskite Ba$_2$MnTeO$_6$ with a $4d^{10}$ Te$^{6+}$ cation on the B-site. It is found to be a Type I antiferromagnet with a dominant nearest-neighbor $J_1$ interaction. In contrast, the $5d^0$ W$^{6+}$ analogue Ba$_2$MnWO$_6$ is a Type II antiferromagnet with a significant next-nearest-neighbor $J_2$ interaction. This is due to a $d^{10}$/$d^0$ effect, where the different orbital hybridization with oxygen 2p results in different superexchange pathways. We show that $d^{10}$ B cations promote nearest neighbor and $d^0$ cations promote next-nearest-neighbor interactions. The $d^{10}$/$d^0$ effect could be used to tune magnetic interactions in double perovskites.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا