Personalized Dynamic Treatment Regimes in Continuous Time: A Bayesian Approach for Optimizing Clinical Decisions with Timing


الملخص بالإنكليزية

Accurate models of clinical actions and their impacts on disease progression are critical for estimating personalized optimal dynamic treatment regimes (DTRs) in medical/health research, especially in managing chronic conditions. Traditional statistical methods for DTRs usually focus on estimating the optimal treatment or dosage at each given medical intervention, but overlook the important question of when this intervention should happen. We fill this gap by developing a two-step Bayesian approach to optimize clinical decisions with timing. In the first step, we build a generative model for a sequence of medical interventions-which are discrete events in continuous time-with a marked temporal point process (MTPP) where the mark is the assigned treatment or dosage. Then this clinical action model is embedded into a Bayesian joint framework where the other components model clinical observations including longitudinal medical measurements and time-to-event data conditional on treatment histories. In the second step, we propose a policy gradient method to learn the personalized optimal clinical decision that maximizes the patient survival by interacting the MTPP with the model on clinical observations while accounting for uncertainties in clinical observations learned from the posterior inference of the Bayesian joint model in the first step. A signature application of the proposed approach is to schedule follow-up visitations and assign a dosage at each visitation for patients after kidney transplantation. We evaluate our approach with comparison to alternative methods on both simulated and real-world datasets. In our experiments, the personalized decisions made by the proposed method are clinically useful: they are interpretable and successfully help improve patient survival.

تحميل البحث