ترغب بنشر مسار تعليمي؟ اضغط هنا

Remix: Rebalanced Mixup

76   0   0.0 ( 0 )
 نشر من قبل Hsin-Ping Chou
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep image classifiers often perform poorly when training data are heavily class-imbalanced. In this work, we propose a new regularization technique, Remix, that relaxes Mixups formulation and enables the mixing factors of features and labels to be disentangled. Specifically, when mixing two samples, while features are mixed in the same fashion as Mixup, Remix assigns the label in favor of the minority class by providing a disproportionately higher weight to the minority class. By doing so, the classifier learns to push the decision boundaries towards the majority classes and balance the generalization error between majority and minority classes. We have studied the state-of-the art regularization techniques such as Mixup, Manifold Mixup and CutMix under class-imbalanced regime, and shown that the proposed Remix significantly outperforms these state-of-the-arts and several re-weighting and re-sampling techniques, on the imbalanced datasets constructed by CIFAR-10, CIFAR-100, and CINIC-10. We have also evaluated Remix on a real-world large-scale imbalanced dataset, iNaturalist 2018. The experimental results confirmed that Remix provides consistent and significant improvements over the previous methods.



قيم البحث

اقرأ أيضاً

Recent works on domain adaptation reveal the effectiveness of adversarial learning on filling the discrepancy between source and target domains. However, two common limitations exist in current adversarial-learning-based methods. First, samples from two domains alone are not sufficient to ensure domain-invariance at most part of latent space. Second, the domain discriminator involved in these methods can only judge real or fake with the guidance of hard label, while it is more reasonable to use soft scores to evaluate the generated images or features, i.e., to fully utilize the inter-domain information. In this paper, we present adversarial domain adaptation with domain mixup (DM-ADA), which guarantees domain-invariance in a more continuous latent space and guides the domain discriminator in judging samples difference relative to source and target domains. Domain mixup is jointly conducted on pixel and feature level to improve the robustness of models. Extensive experiments prove that the proposed approach can achieve superior performance on tasks with various degrees of domain shift and data complexity.
Mixup - a neural network regularization technique based on linear interpolation of labeled sample pairs - has stood out by its capacity to improve models robustness and generalizability through a surprisingly simple formalism. However, its extension to the field of object detection remains unclear as the interpolation of bounding boxes cannot be naively defined. In this paper, we propose to leverage the inherent region mapping structure of anchors to introduce a mixup-driven training regularization for region proposal based object detectors. The proposed method is benchmarked on standard datasets with challenging detection settings. Our experiments show an enhanced robustness to image alterations along with an ability to decontextualize detections, resulting in an improved generalization power.
MixUp is an effective data augmentation method to regularize deep neural networks via random linear interpolations between pairs of samples and their labels. It plays an important role in model regularization, semi-supervised learning and domain adap tion. However, despite its empirical success, its deficiency of randomly mixing samples has poorly been studied. Since deep networks are capable of memorizing the entire dataset, the corrupted samples generated by vanilla MixUp with a badly chosen interpolation policy will degrade the performance of networks. To overcome the underfitting by corrupted samples, inspired by Meta-learning (learning to learn), we propose a novel technique of learning to mixup in this work, namely, MetaMixUp. Unlike the vanilla MixUp that samples interpolation policy from a predefined distribution, this paper introduces a meta-learning based online optimization approach to dynamically learn the interpolation policy in a data-adaptive way. The validation set performance via meta-learning captures the underfitting issue, which provides more information to refine interpolation policy. Furthermore, we adapt our method for pseudo-label based semisupervised learning (SSL) along with a refined pseudo-labeling strategy. In our experiments, our method achieves better performance than vanilla MixUp and its variants under supervised learning configuration. In particular, extensive experiments show that our MetaMixUp adapted SSL greatly outperforms MixUp and many state-of-the-art methods on CIFAR-10 and SVHN benchmarks under SSL configuration.
77 - Zicheng Liu , Siyuan Li , Di Wu 2021
Mixup-based data augmentation has achieved great success as regularizer for deep neural networks. However, existing mixup methods require explicitly designed mixup policies. In this paper, we present a flexible, general Automatic Mixup (AutoMix) fram ework which utilizes discriminative features to learn a sample mixing policy adaptively. We regard mixup as a pretext task and split it into two sub-problems: mixed samples generation and mixup classification. To this end, we design a lightweight mix block to generate synthetic samples based on feature maps and mix labels. Since the two sub-problems are in the nature of Expectation-Maximization (EM), we also propose a momentum training pipeline to optimize the mixup process and mixup classification process alternatively in an end-to-end fashion. Extensive experiments on six popular classification benchmarks show that AutoMix consistently outperforms other leading mixup methods and improves generalization abilities to downstream tasks. We hope AutoMix will motivate the community to rethink the role of mixup in representation learning. The code will be released soon.
69 - Yufei Wang 2020
One of the main drawbacks of deep Convolutional Neural Networks (DCNN) is that they lack generalization capability. In this work, we focus on the problem of heterogeneous domain generalization which aims to improve the generalization capability acros s different tasks, which is, how to learn a DCNN model with multiple domain data such that the trained feature extractor can be generalized to supporting recognition of novel categories in a novel target domain. To solve this problem, we propose a novel heterogeneous domain generalization method by mixing up samples across multiple source domains with two different sampling strategies. Our experimental results based on the Visual Decathlon benchmark demonstrates the effectiveness of our proposed method. The code is released in url{https://github.com/wyf0912/MIXALL}

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا