We report detailed magnetic, transport, heat-capacity, and neutron diffraction measurements of Ba5Ru3O12, a compound consisting of isolated Ru3O12 trimers. We show that this system develops long-range antiferromagnetic ordering at 60 K (TN) without structural distortion and metal-insulator-type transition, which is in sharp contrast to other Barium Ruthenate trimer systems such as 9R-BaRuO3 and Ba4Ru3O10. A complex magnetic structure is revealed which is attributable to the magnetic frustration due to competing exchange interactions between Ru ions on different crystallographic sites within the Ru3O12 trimer.