ﻻ يوجد ملخص باللغة العربية
We present a method for enhancing the sensitivity of X-ray telescopic observations with imaging polarimeters, with a focus on the gas pixel detectors (GPDs) to be flown on the Imaging X-ray Polarimetry Explorer (IXPE). Our analysis determines photoelectron directions, X-ray absorption points and X-ray energies for 1-9 keV event tracks, with estimates for both the statistical and model (reconstruction) uncertainties. We use a weighted maximum likelihood combination of predictions from a deep ensemble of ResNet convolutional neural networks, trained on Monte Carlo event simulations. We define a figure of merit to compare the polarization bias-variance trade-off in track reconstruction algorithms. For power-law source spectra, our method improves on the current planned IXPE analysis (and previous deep learning approaches), providing ~45% increase in effective exposure times. For individual energies, our method produces 20-30% absolute improvements in modulation factor for simulated 100% polarized events, while keeping residual systematic modulation within 1 sigma of the finite sample minimum. Absorption point location and photon energy estimates are also significantly improved. We have validated our method with sample data from real GPD detectors.
The NASA/ASI Imaging X-ray Polarimetry Explorer, which will be launched in 2021, will be the first instrument to perform spatially resolved X-ray polarimetry on several astronomical sources in the 2-8 keV energy band. These measurements are made poss
Since the birth of X-ray astronomy, spectral, spatial and timing observation improved dramatically, procuring a wealth of information on the majority of the classes of the celestial sources. Polarimetry, instead, remained basically unprobed. X-ray po
eXTP is a science mission designed to study the state of matter under extreme conditions of density, gravity and magnetism. Primary targets include isolated and binary neutron stars, strong magnetic field systems like magnetars, and stellar-mass and
In this paper we present the enhanced X-ray Timing and Polarimetry mission - eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the e
While X-ray Spectroscopy, Timing and Imaging have improved verymuch since 1962, when the first astronomical non-solar source was discovered, especially with the launch of Newton/X-ray Multi-Mirror Mission, Rossi/X-ray Timing Explorer and Chandra/Adva