ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting subphase and substantial Knight shift in $Sr_2RuO_4$

99   0   0.0 ( 0 )
 نشر من قبل Reena Gupta
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent nuclear magnetic resonance experiments measuring the Knight shift in $Sr_2RuO_4$ have challenged the widely accepted picture of chiral pairing in this superconductor. Here we study the implications of helical pairing on the superconducting state while comparing our results with the available experimental data on the upper critical field and Knight shift. We solve the Bogoliubov-de-Gennes equation employing a realistic three-dimensional tight-binding model that captures the experimental Fermi surface very well. In agreement with experiments we find a Pauli limiting to the upper critical field and, at low temperatures and high fields, a second superconducting transition. These transitions which form a superconducting subphase in the H-T phase diagram are first-order in nature and merge into a single second-order transition at a bicritical point $(T^ast,H^ast$), for which we find (0.8~K, 2.4~T) with experiment reporting (0.8~K, $sim$ 1.2~T) [textit{Phys. Rev. B} textbf{93}, 184513 (2016)]. Furthermore, we find a substantial drop in the Knight shift in agreement with recent experiments.



قيم البحث

اقرأ أيضاً

We report $^{77}$Se NMR data in the normal and superconducting states of a single crystal of FeSe for several different field orientations. The Knight shift is suppressed in the superconducting state for in-plane fields, but does not vanish at zero t emperature. For fields oriented out of the plane, little or no reduction is observed below $T_c$. These results reflect spin-singlet pairing emerging from a nematic state with large orbital susceptibility and spin-orbit coupling. The spectra and spin-relaxation rate data reveal electronic inhomogeneity that is enhanced in the superconducting state, possibly arising from enhanced density of states in the vortex cores. Despite the spin polarization of these states, there is no evidence for antiferromagnetic fluctuations.
Recent nuclear magnetic resonance studies [A. Pustogow {it et al.}, arXiv:1904.00047] have challenged the prevalent chiral triplet pairing scenario proposed for Sr$_2$RuO$_4$. To provide guidance from microscopic theory as to which other pair states might be compatible with the new data, we perform a detailed theoretical study of spin-fluctuation mediated pairing for this compound. We map out the phase diagram as a function of spin-orbit coupling, interaction parameters, and band-structure properties over physically reasonable ranges, comparing when possible with photoemission and inelastic neutron scattering data information. We find that even-parity pseudospin singlet solutions dominate large regions of the phase diagram, but in certain regimes spin-orbit coupling favors a near-nodal odd-parity triplet superconducting state, which is either helical or chiral depending on the proximity of the $gamma$ band to the van Hove points. A surprising near-degeneracy of the nodal $s^prime$- and $d_{x^2-y^2}$-wave solutions leads to the possibility of a near-nodal time-reversal symmetry broken $s^prime+id_{x^2-y^2}$ pair state. Predictions for the temperature dependence of the Knight shift for fields in and out of plane are presented for all states.
126 - Y. Ihara , K. Ishida , H. Takeya 2005
The Co Knight shift was measured in an aligned powder sample of Na_xCoO_2yH_2O, which shows superconductivity at T_c sim 4.6 K. The Knight-shift components parallel (K_c) and perpendicular to the c-axis (along the ab plane K_{ab}) were measured in bo th the normal and superconducting (SC) states. The temperature dependences of K_{ab} and K_c are scaled with the bulk susceptibility, which shows that the microscopic susceptibility deduced from the Knight shift is related to Co-3d spins. In the SC state, the Knight shift shows an anisotropic temperature dependence: K_{ab} decreases below 5 K, whereas K_c does not decrease within experimental accuracy. This result raises the possibility that spin-triplet superconductivity with the spin component of the pairs directed along the c-axis is realized in Na_xCoO_2yH_2O.
The superconducting state in the quasi-two-dimensional and strongly correlated Sr$_2$RuO$_4$ is uniquely held up as a solid state analog to superfluid $^3$He-$A$, with an odd-parity order parameter that also breaks time reversal symmetry, and for whi ch the vector order parameter has the same direction in spin space for all electron momenta. The recent discovery that uniaxial pressure causes a steep rise and maximum in transition temperature ($T_c$) in strained samples motivated the study of $^{17}$O nuclear magnetic resonance (NMR) that we describe in this article. A reduction of Knight shifts $K$ was observed for all strain values and temperatures $T<T_c$, consistent with a drop in spin polarization in the superconducting state. In unstrained samples, our results are in contradiction with a body of previous NMR work, and with the most prominent previous proposals for the order parameter of Sr$_2$RuO$_4$. Possible alternative scenarios are discussed.
To clarify the superconducting gap structure of the spin-triplet superconductor Sr_2RuO_4, the in-plane thermal conductivity has been measured as a function of relative orientations of the thermal flow, the crystal axes, and a magnetic field rotating within the 2D RuO_2 planes. The in-plane variation of the thermal conductivity is incompatible with any model with line nodes vertical to the 2D planes and indicates the existence of horizontal nodes. These results place strong constraints on models that attempt to explain the mechanism of the triplet superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا