ﻻ يوجد ملخص باللغة العربية
The spontaneous emission of an excited two-level emitter driven by a strong classical coherent low-frequency electromagnetic field is investigated. We find that for relatively strong laser driving, multi-photon processes are induced, thereby opening additional decay channels for the atom. We analyze the interplay between the strong low-frequency driving and the interfering multiphoton decay channels, and discuss its implications for the spontaneous emission dynamics.
We analyze the role of the difference between the central frequencies of the spectral distributions of the vector potential and the electric field of a short laser pulse. The frequency shift arises when the electric field is determined as the derivat
The strong-field approximation can be and has been applied in both length gauge and velocity gauge with quantitatively conflicting answers. For ionization of negative ions with a ground state of odd parity, the predictions of the two gauges differ qu
We use classical electron ensembles and the aligned-electron approximation to examine the effect of laser pulse duration on the dynamics of strong-field double ionization. We cover the range of intensities $10^{14}-10^{16} W/cm^2$ for the laser wavel
We show that a simple scheme based on nondegenerate four-wave mixing in a hot atomic vapor behaves like a near-perfect phase-insensitive optical amplifier, which can generate bright twin beams with a measured quantum noise reduction in the intensity
We consider a one-dimensional chain of N equidistantly spaced noninteracting qubits embedded in an open waveguide. In the frame of single-excitation subspace, we systematically study the evolution of qubits amplitudes if the only qubit in the chain w