ﻻ يوجد ملخص باللغة العربية
Data defined over a network have been successfully modelled by means of graph filters. However, although in many scenarios the connectivity of the network is known, e.g., smart grids, social networks, etc., the lack of well-defined interaction weights hinders the ability to model the observed networked data using graph filters. Therefore, in this paper, we focus on the joint identification of coefficients and graph weights defining the graph filter that best models the observed input/output network data. While these two problems have been mostly addressed separately, we here propose an iterative method that exploits the knowledge of the support of the graph for the joint identification of graph filter coefficients and edge weights. We further show that our iterative scheme guarantees a non-increasing cost at every iteration, ensuring a globally-convergent behavior. Numerical experiments confirm the applicability of our proposed approach.
In this work, we explore the state-space formulation of network processes to recover the underlying structure of the network (local connections). To do so, we employ subspace techniques borrowed from system identification literature and extend them t
In this work, we explore the state-space formulation of a network process to recover, from partial observations, the underlying network topology that drives its dynamics. To do so, we employ subspace techniques borrowed from system identification lit
Several works based on Generative Adversarial Networks (GAN) have been recently proposed to predict a set of medical images from a single modality (e.g, FLAIR MRI from T1 MRI). However, such frameworks are primarily designed to operate on images, lim
Brain graphs (i.e, connectomes) constructed from medical scans such as magnetic resonance imaging (MRI) have become increasingly important tools to characterize the abnormal changes in the human brain. Due to the high acquisition cost and processing
This paper presents a quarter Laplacian filter that can preserve corners and edges during image smoothing. Its support region is $2times2$, which is smaller than the $3times3$ support region of Laplacian filter. Thus, it is more local. Moreover, this