ﻻ يوجد ملخص باللغة العربية
Continuum emission, also called white-light emission (WLE), and permanent changes of the magnetic field ($Delta{B}_{{rm{LOS}}}$) are often observed during solar flares. But their relation and their precise mechanisms are still unknown. We study statistically the relationship between $Delta{B}_{{rm{LOS}}}$ and WLE during 75 solar flares of different strengths and locations on the solar disk. We analyze SDO/HMI data and determine for each pixel in each flare if it exhibited WLE and/or $Delta{B}_{{rm{LOS}}}$. We then investigate the occurrence, strength, and spatial size of the WLE, its dependence on flare energy, and its correlation to the occurrence of $Delta{B}_{{rm{LOS}}}$. We detected WLE in 44/75 flares and $Delta{B}_{{rm{LOS}}}$ in 59/75 flares. We find that WLE and $Delta{B}_{{rm{LOS}}}$ are related, and their locations often overlap between 0-60%. Not all locations coincide, thus potentially indicating differences in their origin. We find that the WL area is related to the flare class by a power law and extend the findings of previous studies, that the WLE is related to the flare class by a power law, to also be valid for C-class flares. To compare unresolved (Sun-as-a-star) WL measurements to our data, we derive a method to calculate temperatures and areas of such data under the black-body assumption. The calculated unresolved WLE areas improve, but still differ to the resolved flaring area by about a factor of 5-10 (previously 10-20), which could be explained by various physical or instrumental causes. This method could also be applied to stellar flares to determine their temperatures and areas independently.
Abrupt and permanent changes of photospheric magnetic fields have been observed during solar flares. The changes seem to be linked to the reconfiguration of magnetic fields, but their origin is still unclear. We carried out a statistical analysis of
Many previous studies have shown that magnetic fields as well as sunspot structures present rapid and irreversible changes associated with solar flares. In this paper we first use five X-class flares observed by SDO/HMI to show that not only the magn
The observations of magnetic field variations as a signature of flaring activity is one of the main goal in solar physics. Some efforts in the past give apparently no unambiguous observations of changes. We observed that the scaling laws of the curre
We estimated photospheric velocities by separately applying the Fourier Local Correlation Tracking (FLCT) and Differential Affine Velocity Estimator (DAVE) methods to 2708 co-registered pairs of SOHO/MDI magnetograms, with nominal 96-minute cadence a
Using observations by the Solar Dynamics Observatory from June 2010 to December 2017, we have performed the first statistical investigation of circular-ribbon flares (CFs) and examined the white-light emission in these CFs. We find 90 CFs occurring i