ﻻ يوجد ملخص باللغة العربية
We developed a reliable probabilistic solar flare forecasting model using a deep neural network, named Deep Flare Net-Reliable (DeFN-R). The model can predict the maximum classes of flares that occur in the following 24 h after observing images, along with the event occurrence probability. We detected active regions from 3x10^5 solar images taken during 2010-2015 by Solar Dynamic Observatory and extracted 79 features for each region, which we annotated with flare occurrence labels of X-, M-, and C-classes. The extracted features are the same as used by Nishizuka et al. (2018); for example, line-of-sight/vector magnetograms in the photosphere, brightening in the corona, and the X-ray emissivity 1 and 2 h before an image. We adopted a chronological split of the database into two for training and testing in an operational setting: the dataset in 2010-2014 for training and the one in 2015 for testing. DeFN-R is composed of multilayer perceptrons formed by batch normalizations and skip connections. By tuning optimization methods, DeFN-R was trained to optimize the Brier skill score (BSS). As a result, we achieved BSS = 0.41 for >=C-class flare predictions and 0.30 for >=M-class flare predictions by improving the reliability diagram while keeping the relative operating characteristic curve almost the same. Note that DeFN is optimized for deterministic prediction, which is determined with a normalized threshold of 50%. On the other hand, DeFN-R is optimized for a probability forecast based on the observation event rate, whose probability threshold can be selected according to users purposes.
We developed a solar flare prediction model using a deep neural network (DNN), named Deep Flare Net (DeFN). The model can calculate the probability of flares occurring in the following 24 h in each active region, which is used to determine the most l
A workshop was recently held at Nagoya University (31 October - 02 November 2017), sponsored by the Center for International Collaborative Research, at the Institute for Space-Earth Environmental Research, Nagoya University, Japan, to quantitatively
Solar flares originate from magnetically active regions but not all solar active regions give rise to a flare. Therefore, the challenge of solar flare prediction benefits by an intelligent computational analysis of physics-based properties extracted
In this study we determine scaling relationships of observed solar flares that can be used to predict upper limits of the GOES-class magnitude of solar flares. The flare prediction scheme is based on the scaling of the slowly-varying potential energy
Solar flares are extremely energetic phenomena in our Solar System. Their impulsive, often drastic radiative increases, in particular at short wavelengths, bring immediate impacts that motivate solar physics and space weather research to understand s