ﻻ يوجد ملخص باللغة العربية
This white paper describes the science case for Very Long Baseline Interferometry (VLBI) and provides suggestions towards upgrade paths for the European VLBI Network (EVN). The EVN is a distributed long-baseline radio interferometric array, that operates at the very forefront of astronomical research. Recent results, together with the new science possibilities outlined in this vision document, demonstrate the EVNs potential to generate new and exciting results that will transform our view of the cosmos. Together with e-MERLIN, the EVN provides a range of baseline lengths that permit unique studies of faint radio sources to be made over a wide range of spatial scales. The science cases are reviewed in six chapters that cover the following broad areas: cosmology, galaxy formation and evolution, innermost regions of active galactic nuclei, explosive phenomena and transients, stars and stellar masers in the Milky Way, celestial reference frames and space applications. The document concludes with identifying the synergies with other radio, as well as multi-band/multi-messenger instruments, and provide the recommendations for future improvements. The appendices briefly describe other radio VLBI arrays, the technological framework for EVN developments, and a selection of spectral lines of astrophysical interest below 100 GHz. The document includes a glossary for non-specialists, and a list of acronyms at the end.
The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a set of mission concepts for the next generation of UVOIR space observatory with a primary aperture diameter in the 8-m to 16-m range that will allow us to perform some of the most c
Guided by the recently published science case for the future of European VLBI, EVN2015, a roadmap for the future of the EVN is sketched out in this paper. The various desired technical improvements are being discussed with an emphasis on the role of
The acronym ESPRESSO stems for Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations; this instrument will be the next VLT high resolution spectrograph. The spectrograph will be installed at the Combined-Coude Laboratory of
In recent years, machine learning (ML) methods have remarkably improved how cosmologists can interpret data. The next decade will bring new opportunities for data-driven cosmological discovery, but will also present new challenges for adopting ML met
The European Far-Infrared (FIR) Space Roadmap focuses on fundamental, yet still unresolved, astrophysical questions that can only be answered through a far-infrared space mission and gives an overview of the technology required to answer them. The do