ترغب بنشر مسار تعليمي؟ اضغط هنا

VLBI20-30: a scientific roadmap for the next decade -- The future of the European VLBI Network

107   0   0.0 ( 0 )
 نشر من قبل Zsolt Paragi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This white paper describes the science case for Very Long Baseline Interferometry (VLBI) and provides suggestions towards upgrade paths for the European VLBI Network (EVN). The EVN is a distributed long-baseline radio interferometric array, that operates at the very forefront of astronomical research. Recent results, together with the new science possibilities outlined in this vision document, demonstrate the EVNs potential to generate new and exciting results that will transform our view of the cosmos. Together with e-MERLIN, the EVN provides a range of baseline lengths that permit unique studies of faint radio sources to be made over a wide range of spatial scales. The science cases are reviewed in six chapters that cover the following broad areas: cosmology, galaxy formation and evolution, innermost regions of active galactic nuclei, explosive phenomena and transients, stars and stellar masers in the Milky Way, celestial reference frames and space applications. The document concludes with identifying the synergies with other radio, as well as multi-band/multi-messenger instruments, and provide the recommendations for future improvements. The appendices briefly describe other radio VLBI arrays, the technological framework for EVN developments, and a selection of spectral lines of astrophysical interest below 100 GHz. The document includes a glossary for non-specialists, and a list of acronyms at the end.



قيم البحث

اقرأ أيضاً

The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a set of mission concepts for the next generation of UVOIR space observatory with a primary aperture diameter in the 8-m to 16-m range that will allow us to perform some of the most c hallenging observations to answer some of our most compelling questions, including Is there life elsewhere in the Galaxy? We have identified two different telescope architectures, but with similar optical designs, that span the range in viable technologies. The architectures are a telescope with a monolithic primary mirror and two variations of a telescope with a large segmented primary mirror. This approach provides us with several pathways to realizing the mission, which will be narrowed to one as our technology development progresses. The concepts invoke heritage from HST and JWST design, but also take significant departures from these designs to minimize complexity, mass, or both. Our report provides details on the mission concepts, shows the extraordinary scientific progress they would enable, and describes the most important technology development items. These are the mirrors, the detectors, and the high-contrast imaging technologies, whether internal to the observatory, or using an external occulter. Experience with JWST has shown that determined competitors, motivated by the development contracts and flight opportunities of the new observatory, are capable of achieving huge advances in technical and operational performance while keeping construction costs on the same scale as prior great observatories.
Guided by the recently published science case for the future of European VLBI, EVN2015, a roadmap for the future of the EVN is sketched out in this paper. The various desired technical improvements are being discussed with an emphasis on the role of e-VLBI. With this innovation new scientific capabilities are introduced. In this way the EVN is also positioned as an interesting platform for exercising new techniques and operational models, complementary to other SKA pathfinders. In return, the technology development for the SKA can have a positive impact on the scientific capabilities of VLBI, for example on the development of a next generation correlator, capable to process much larger data-rates. The development of cheap, frequency agile antennas can also be of great importance for VLBI. This adds to the potential for maintaining a Northern hemisphere, global VLBI array in the SKA era.
185 - F. Pepe , P. Molaro , S. Cristiani 2014
The acronym ESPRESSO stems for Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations; this instrument will be the next VLT high resolution spectrograph. The spectrograph will be installed at the Combined-Coude Laboratory of the VLT and linked to the four 8.2 m Unit Telescopes (UT) through four optical Coude trains. ESPRESSO will combine efficiency and extreme spectroscopic precision. ESPRESSO is foreseen to achieve a gain of two magnitudes with respect to its predecessor HARPS, and to improve the instrumental radial-velocity precision to reach the 10 cm/s level. It can be operated either with a single UT or with up to four UTs, enabling an additional gain in the latter mode. The incoherent combination of four telescopes and the extreme precision requirements called for many innovative design solutions while ensuring the technical heritage of the successful HARPS experience. ESPRESSO will allow to explore new frontiers in most domains of astrophysics that require precision and sensitivity. The main scientific drivers are the search and characterization of rocky exoplanets in the habitable zone of quiet, nearby G to M-dwarfs and the analysis of the variability of fundamental physical constants. The project passed the final design review in May 2013 and entered the manufacturing phase. ESPRESSO will be installed at the Paranal Observatory in 2016 and its operation is planned to start by the end of the same year.
In recent years, machine learning (ML) methods have remarkably improved how cosmologists can interpret data. The next decade will bring new opportunities for data-driven cosmological discovery, but will also present new challenges for adopting ML met hodologies and understanding the results. ML could transform our field, but this transformation will require the astronomy community to both foster and promote interdisciplinary research endeavors.
The European Far-Infrared (FIR) Space Roadmap focuses on fundamental, yet still unresolved, astrophysical questions that can only be answered through a far-infrared space mission and gives an overview of the technology required to answer them. The do cument discusses topics ranging from Solar System and Planet Formation, Our Galaxy and nearby Galaxies and Distant Galaxies and Galaxy Evolution. The FIR Roadmap was open to comments from the wider astronomical community following a presentation during EWASS 2016.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا