ترغب بنشر مسار تعليمي؟ اضغط هنا

Irreducible Jet modules for the vector field Lie algebra on $mathbb{S}^1times mathbb{C}$

114   0   0.0 ( 0 )
 نشر من قبل Genqiang Liu
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For a commutative algebra $A$ over $mathbb{C}$,denote $mathfrak{g}=text{Der}(A)$. A module over the smash product $A# U(mathfrak{g})$ is called a jet $mathfrak{g}$-module, where $U(mathfrak{g})$ is the universal enveloping algebra of $mathfrak{g}$.In the present paper, we study jet modules in the case of $A=mathbb{C}[t_1^{pm 1},t_2]$.We show that $A#U(mathfrak{g})congmathcal{D}otimes U(L)$, where $mathcal{D}$ is the Weyl algebra $mathbb{C}[t_1^{pm 1},t_2, frac{partial}{partial t_1},frac{partial}{partial t_2}]$, and $L$ is a Lie subalgebra of $A# U(mathfrak{g})$ called the jet Lie algebra corresponding to $mathfrak{g}$.Using a Lie algebra isomorphism $theta:L rightarrow mathfrak{m}_{1,0}Delta$, where $mathfrak{m}_{1,0}Delta$ is the subalgebra of vector fields vanishing at the point $(1,0)$, we show that any irreducible finite dimensional $L$-module is isomorphic to an irreducible $mathfrak{gl}_2$-module. As an application, we give tensor product realizations of irreducible jet modules over $mathfrak{g}$ with uniformly bounded weight spaces.



قيم البحث

اقرأ أيضاً

107 - Maosen Xu , Yanyong Hong 2021
In this paper, we introduce the notion of completely non-trivial module of a Lie conformal algebra. By this notion, we classify all finite irreducible modules of a class of $mathbb{Z}^+$-graded Lie conformal algebras $mathcal{L}=bigoplus_{i=0}^{infty } mathbb{C}[partial]L_i$ satisfying $ [{L_0}_lambda L_0]=(partial+2lambda)L_0,$ and $[{L_1}_lambda L_i] eq 0$ for any $iin mathbb{Z}^+$. These Lie conformal algebras include Block type Lie conformal algebra $mathcal{B}(p)$ and map Virasoro Lie conformal algebra $mathcal{V}(mathbb{C}[T])=Virotimes mathbb{C}[T]$. As a result, we show that all non-trivial finite irreducible modules of these algebras are free of rank one as a $mathbb{C}[partial]$-module.
142 - Ming Ding , Jie Xiao , Fan Xu 2008
The canonical bases of cluster algebras of finite types and rank 2 are given explicitly in cite{CK2005} and cite{SZ} respectively. In this paper, we will deduce $mathbb{Z}$-bases for cluster algebras for affine types $widetilde{A}_{n,n},widetilde{D}$ and $widetilde{E}$. Moreover, we give an inductive formula for computing the multiplication between two generalized cluster variables associated to objects in a tube.
Let $L$ be a Lie algebra of Block type over $C$ with basis ${L_{alpha,i},|,alpha,iinZ}$ and brackets $[L_{alpha,i},L_{beta,j}]=(beta(i+1)-alpha(j+1))L_{alpha+beta,i+j}$. In this paper, we shall construct a formal distribution Lie algebra of $L$. Then we decide its conformal algebra $B$ with $C[partial]$-basis ${L_alpha(w),|,alphainZ}$ and $lambda$-brackets $[L_alpha(w)_lambda L_beta(w)]=(alphapartial+(alpha+beta)lambda)L_{alpha+beta}(w)$. Finally, we give a classification of free intermediate series $B$-modules.
In the present paper, we introduce a class of infinite Lie conformal superalgebras $mathcal{S}(p)$, which are closely related to Lie conformal algebras of extended Block type defined in cite{CHS}. Then all finite non-trivial irreducible conformal mod ules over $mathcal{S}(p)$ for $pinC^*$ are completely classified. As an application, we also present the classifications of finite non-trivial irreducible conformal modules over finite quotient algebras $mathfrak{s}(n)$ for $ngeq1$ and $mathfrak{sh}$ which is isomorphic to a subalgebra of Lie conformal algebra of $N=2$ superconformal algebra. Moreover, as a generalized version of $mathcal{S}(p)$, the infinite Lie conformal superalgebras $mathcal{GS}(p)$ are constructed, which have a subalgebra isomorphic to the finite Lie conformal algebra of $N=2$ superconformal algebra.
In this paper, the property and the classification the simple Whittaker modules for the schr{o}dinger algebra are studied. A quasi-central element plays an important role in the study of Whittaker modules of level zero. For the Whittaker modules of n onzero level, our arguments use the Casimir element of semisimple Lie algebra $sl_2$ and the description of simple modules over conformal Galilei algebras by R. L{u}, V. Mazorchuk and K. Zhao.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا