ﻻ يوجد ملخص باللغة العربية
Most existing trackers are based on using a classifier and multi-scale estimation to estimate the target state. Consequently, and as expected, trackers have become more stable while tracking accuracy has stagnated. While trackers adopt a maximum overlap method based on an intersection-over-union (IoU) loss to mitigate this problem, there are defects in the IoU loss itself, that make it impossible to continue to optimize the objective function when a given bounding box is completely contained within/without another bounding box; this makes it very challenging to accurately estimate the target state. Accordingly, in this paper, we address the above-mentioned problem by proposing a novel tracking method based on a distance-IoU (DIoU) loss, such that the proposed tracker consists of target estimation and target classification. The target estimation part is trained to predict the DIoU score between the target ground-truth bounding-box and the estimated bounding-box. The DIoU loss can maintain the advantage provided by the IoU loss while minimizing the distance between the center points of two bounding boxes, thereby making the target estimation more accurate. Moreover, we introduce a classification part that is trained online and optimized with a Conjugate-Gradient-based strategy to guarantee real-time tracking speed. Comprehensive experimental results demonstrate that the proposed method achieves competitive tracking accuracy when compared to state-of-the-art trackers while with a real-time tracking speed.
Large-scale object detection datasets (e.g., MS-COCO) try to define the ground truth bounding boxes as clear as possible. However, we observe that ambiguities are still introduced when labeling the bounding boxes. In this paper, we propose a novel bo
Bounding box regression is an important component in object detection. Recent work has shown the promising performance by optimizing the Intersection over Union (IoU) as loss. However, IoU-based loss has the gradient vanish problem in the case of low
Object detection, instance segmentation, and pose estimation are popular visual recognition tasks which require localizing the object by internal or boundary landmarks. This paper summarizes these tasks as location-sensitive visual recognition and pr
Accurate tracking is still a challenging task due to appearance variations, pose and view changes, and geometric deformations of target in videos. Recent anchor-free trackers provide an efficient regression mechanism but fail to produce precise bound
Most of the existing trackers usually rely on either a multi-scale searching scheme or pre-defined anchor boxes to accurately estimate the scale and aspect ratio of a target. Unfortunately, they typically call for tedious and heuristic configurations