ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffractive $gamma gamma$ production in $pp$ collisions at the LHC

102   0   0.0 ( 0 )
 نشر من قبل Victor Goncalves
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this letter we estimate the contribution of the double diffractive processes for the diphoton production in $pp$ collisions at the Large Hadron Collider (LHC). The acceptance of the central and forward LHC detectors is taken into account and predictions for the invariant mass, rapidity and, transverse momentum distributions are presented. A comparison with the predictions for the Light -- by -- Light (LbL) scattering and exclusive diphoton production is performed. We demonstrate that the events associated to double diffractive processes can be separated and its study can be used to constrain the behavior of the diffractive parton distribution functions.



قيم البحث

اقرأ أيضاً

Particle production in two-photon interactions at hadronic collisions is becoming increasingly relevant in the LHC physics programme as a way to improve our understanding of the Standard Model and search for signals of New Physics. A key ingredient f or the study of these interactions in $pp$ collisions is the description of the photon content of the proton, which allow us to derive predictions for the cross sections associated to events where occur the proton dissociation (non - exclusive processes) and for those where both incident protons remain intact (exclusive processes). In this paper, a detailed comparison of the different models for the elastic and inelastic photon distributions found in the literature is presented and the current theoretical uncertainty is estimated. The impact on the invariant mass distribution for the dimuon production is analyzed. Moreover, the relative contribution of non - exclusive events is estimated and its dependence on the invariant mass of the pair is presented. We demonstrate that the predictions for production of pairs with large invariant mass is strongly dependent on the model assumed to describe the elastic and inelastic photon distributions and that the ratio between non - exclusive and exclusive cross sections present a mild energy dependence. Finally, our results indicate that a future experimental analysis of the non - exclusive events will be useful to constrain the photon content of proton.
We have performed a systematic study of $J/psi$ and $psi(2S)$ production in $p-p$ collisions at different LHC energies and at different rapidities using the leading order (LO) non-relativistic QCD (NRQCD) model of heavy quarkonium production. We have included the contributions from $chi_{cJ}$ ($J$ = 0, 1, 2) and $psi(2S)$ decays to $J/psi$. The calculated values have been compared with the available data from the four experiments at LHC namely, ALICE, ATLAS, CMS and LHCb. In case of ALICE, inclusive $J/psi$ and $psi(2S)$ cross-sections have been calculated by including the feed-down from $B$ meson using Fixed-Order Next-to-Leading Logarithm (FONLL) formalism. It is found that all the experimental cross-sections are well reproduced for $p_T >$ 4 GeV within the theoretical uncertainties arising due to the choice of the factorization scale. We also predict the transverse momentum distributions of $J/psi$ and $psi(2S)$ both for the direct and feed-down processes at the upcoming LHC energies of $sqrt{s} =$ 5.1 TeV and 13 TeV for the year 2015.
A phenomenological model for the description of the single and double diffractive excitation in $pp$ collisions at high energies is presented. Considering the Good -- Walker approach, we propose a model for the eigenstates of the scattering operator and for the treatment of the interaction between them, with the high energy behavior of the cross section driven by perturbative QCD. The behavior of the total, elastic, single and double diffractive cross sections are analyzed and predictions for the energies of Run 3 of the LHC and those of the Cosmic Rays experiments are derived. We demonstrate that the model describes the current data for the energy dependence of the cross sections. A comparison with the recent data for the $rho$ parameter and the differential elastic cross section are also presented and shortcomings of the current model are discussed.
The production of $X(4350)$ in the $gamma gamma$ interactions that occur in proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN Large Hadron Collider (LHC) is investigated and predictions for the kinematical ranges probed by the ALICE and LHCb Collaborations are presented. We focus on the $gamma gamma rightarrow phi J/Psi$ process, which have been measured by the Belle Collaboration, and present parameter free predictions for the total cross sections at the LHC energies. Our results demonstrate that the experimental study of this process is feasible and can be used to confirm or not the existence of the $X(4350)$ state. Finally, for completeness, we present predictions for the production of the $X(3915)$ state in the $gamma gamma rightarrow omega J/Psi$ process and show that this exotic state can also be probed in $gamma gamma$ interactions at the LHC.
Prospects for strangeness production in pp collisions at the Large Hadron Collider (LHC) are discussed within the statistical model. Firstly, the system size and the energy dependence of the model parameters are extracted from existing data and extra polated to LHC energy. Particular attention is paid to demonstrate that the chemical decoupling temperature is independent of the system size. In the energy regime investigated so far, strangeness production in pp interactions is strongly influenced by the canonical suppression effects. At LHC energies, this influence might be reduced. Particle ratios with particular sensitivity to canonical effects are indicated. Secondly, the relation between the strangeness production and the charged-particle multiplicity in pp interactions is investigated. In this context the multiplicity dependence studied at Tevatron is of particular interest. There, the trend in relative strangeness production known from centrality dependent heavy-ion collisions is not seen in multiplicity selected pp interactions. However, the conclusion from the Tevatron measurements is based on rather limited data samples with low statistics and number of observables. We argue, that there is an absolute need at LHC to measure strangeness production in events with different multiplicities to possibly disentangle relations and differences between particle production in pp and heavy-ion collisions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا