ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic correlations in the semimetallic hyper-kagome iridate Na3Ir3O8

135   0   0.0 ( 0 )
 نشر من قبل Gediminas Simutis
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a microscopic study of a doped quantum spin liquid candidate, the hyperkagome Na$_3$Ir$_3$O$_8$ compound by using $^{23}$Na NMR. We determine the intrinsic behavior of the uniform textbf{q} $ = 0$ susceptibility via shift measurements and the dynamical response by probing the spin-lattice relaxation rate. Throughout the studied temperature range, the susceptibility is consistent with a semimetal behavior, though with electronic bands substantially modified by correlations. Remarkably, the antiferromagnetic fluctuations present in the insulating parent compound Na$_4$Ir$_3$O$_8$ survive in the studied compound. The spin dynamics are consistent with 120$^o$ excitations modes displaying short-range correlations.



قيم البحث

اقرأ أيضاً

The complex iridium oxide Na3Ir3O8 with a B-site ordered spinel structure was synthesized in single crystalline form, where the chiral hyper-kagome lattice of Ir atoms, as observed in the spin-liquid candidate Na4Ir3O8, was identified. The average va lence of Ir is 4.33+ and, therefore, Na3Ir3O8 can be viewed as a doped analogue of the hyper-kagome spin liquid with Ir4+. The transport measurements showed that Na3Ir3O8 is in fact a semi-metal. The electronic structure calculation demonstrated that the strong spin-orbit coupling of Ir yields the semi-metallic state out of an otherwise band insulating state, which may harbor exotic topological effects embedded in the hyper-kagome lattice.
The kagome Hubbard model (KHM) is a paradigmatic example of a frustrated two-dimensional model. While its strongly correlated regime, described by a Heisenberg model, is of topical interest due to its enigmatic prospective spin-liquid ground state, t he weakly and moderately correlated regimes remain largely unexplored. Motivated by the rapidly growing number of metallic kagome materials (e.g., Mn$_3$Sn, Fe$_3$Sn$_2$, FeSn, Co$_3$Sn$_2$S$_2$, Gd$_3$Ru$_4$Al$_{12}$), we study the respective regimes of the KHM by means of three complementary numerical methods: the dynamical mean-field theory (DMFT), the dynamical vertex approximation (D$Gamma$A), and determinant quantum Monte Carlo (DQMC). In contrast to the archetypal square-lattice, we find no tendencies towards magnetic ordering, as magnetic correlations remain short-range. Nevertheless, the magnetic correlations undergo a remarkable crossover as the system approaches the metal-to-insulator transition. The Mott transition itself does however not affect the magnetic correlations. Our equal-time and dynamical structure factors can be used as a reference for inelastic neutron scattering experiments on the growing family of metallic kagome materials.
399 - Jian Liu , D. Kriegner , L. Horak 2015
By using a combination of heteroepitaxial growth, structure refinement based on synchrotron x-ray diffraction and first-principles calculations, we show that the symmetry-protected Dirac line nodes in the topological semimetallic perovskite SrIrO3 ca n be lifted simply by applying epitaxial constraints. In particular, the Dirac gap opens without breaking the Pbnm mirror symmetry. In virtue of a symmetry-breaking analysis, we demonstrate that the original symmetry protection is related to the n-glide operation, which can be selectively broken by different heteroepitaxial structures. This symmetry protection renders the nodal line a nonsymmorphic Dirac semimetallic state. The results highlight the vital role of crystal symmetry in spin-orbit-coupled correlated oxides and provide a foundation for experimental realization of topological insulators in iridate-based heterostructures.
The realization of Kitaev spin liquid, where spins on a honeycomb lattice are coupled ferromagnetically by bond-dependent anisotropic interactions, has been a sought-after dream. 5d iridium oxides $alpha$-Li2IrO3 and $alpha$-Na2IrO3 with a honeycomb lattice of Jeff = 1/2 moments recently emerged as a possible materialization. Strong signature of Kitaev physics, however, was not captured. Here we report the discovery of a complex iridium oxide $beta$-Li2IrO3 with Jeff = 1/2 moments on hyper-honeycomb lattice, a three-dimensional analogue of honeycomb lattice. A positive Curie-Weiss temperature $theta_{CW}$ ~ 40 K indicated dominant ferromagnetic interactions among Jeff = 1/2 moments in $beta$-Li2IrO3. A magnetic ordering with a small entropy change was observed at Tc = 38 K, which, with the application of magnetic field of only 3 T, changed to a fully polarized state of Jeff = 1/2 moments. Those results imply that hyper-honeycomb beta-Li2IrO3 is located in the vicinity to a Kitaev spin liquid.
Temperature-dependent dynamical spin correlations, which can be readily accessed via a variety of experimental techniques, hold the potential of offering a unique fingerprint of quantum spin liquids and other intriguing dynamical states. In this work we present an in-depth study of the temperature-dependent dynamical spin structure factor $S({bf q}, omega)$ of the antiferromagnetic (AFM) Heisenberg spin-1/2 model on the kagome lattice with additional Dzyaloshinskii--Moriya (DM) interactions. Using the finite-temperature Lanczos method on lattices with up to $N = 30$ sites we find that even without DM interactions, chiral low-energy spin fluctuations of the $120^circ$ AFM order parameter dominate the dynamical response. This leads to a nontrivial frequency dependence of $S({bf q}, omega)$ and the appearance of a pronounced low-frequency mode at the M point of the extended Brillouin zone. Adding an out-of-plane DM interactions $D^z$ gives rise to an anisotropic dynamical response, a softening of in-plane spin fluctuations, and, ultimately, the onset of a coplanar AFM ground-state order at $D^z > 0.1 J$. Our results are in very good agreement with existing inelastic neutron scattering and temperature-dependent NMR spin-lattice relaxation rate ($1/T_1$) data on the paradigmatic kagome AFM herbertsmithite, where the effect of its small $D^z$ on the dynamical spin correlations is shown to be rather small, as well as with $1/T_1$ data on the novel kagome AFM YCu$_3$(OH)$_6$Cl$_3$, where its substantial $D^z approx 0.25 J$ interaction is found to strongly affect the spin dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا