Generic and Mod p Kazhdan-Lusztig Theory for GL_2


الملخص بالإنكليزية

Let $F$ be a non-archimedean local field with residue field $mathbb{F}_q$ and let $G = GL_2/F$. Let $mathbf{q}$ be an indeterminate and let $H^{(1)}(mathbf{q})$ be Vigneras generic pro-p Iwahori-Hecke algebra of the p-adic group $G(F)$. Let $V_{widehat{G}}$ be the Vinberg monoid of the dual group of $G$. We establish a generic version for $H^{(1)}(mathbf{q})$ of the Kazhdan-Lusztig-Ginzburg antispherical representation, the Bernstein map and the Satake isomorphism. We define the flag variety for the monoid $V_{widehat{G}}$ and establish the characteristic map in its equivariant K-theory. These generic constructions recover the classical ones after the specialization $mathbf{q} = q in mathbb{C}$. At $mathbf{q} = q = 0 inoverline{mathbb{F}}_q$, the antispherical map provides a dual parametrization of all the irreducible $H^{(1)}_{overline{mathbb{F}}_q}(0)$-modules. This work supersedes our earlier work arXiv:1907.08808. We explain the relationship between the two articles in the introduction.

تحميل البحث