ﻻ يوجد ملخص باللغة العربية
Let $(G,X)$ be a Shimura datum of Hodge type, and $mathscr{S}_K(G,X)$ its integral model with hyperspecial level structure. We prove that $mathscr{S}_K(G,X)$ admits a closed embedding, which is compatible with moduli interpretations, into the integral model $mathscr{S}_{K}(mathrm{GSp},S^{pm})$ for a Siegel modular variety. In particular, the normalization step in the construction of $mathscr{S}_K(G,X)$ is redundant. In particular, our results apply to the earlier integral models constructed by Rapoport and Kottwitz, as those models agree with the Hodge type integral models for appropriately chosen Shimura data.
This is a survey of the three main methods developed in the last 15 years to prove the existence of integral canonical models of Shimura varieties of Hodge type. The only new part is formed by corrections to results of Kisin.
Let k be a perfect field of characteristic p>0. We prove the existence of ascending and descending slope filtrations for Shimura p-divisible objects over k. We use them to classify rationally these objects over bar k. Among geometric applications, we
We prove the existence of good smooth integral models of Shimura varieties of Hodge type in arbitrary unramified mixed characteristic $(0,p)$. As a first application we provide a smooth solution (answer) to a conjecture (question) of Langlands for Sh
We prove a conjecture of Milne pertaining to the existence of integral canonical models of Shimura varieties of abelian type in arbitrary unramified mixed characteristic $(0,p)$. As an application we prove for $p=2$ a motivic conjecture of Milne pert
In this article, we generalize the work of H.Hida and V.Pilloni to construct $p$-adic families of $mu$-ordinary modular forms on Shimura varieties of Hodge type $Sh(G,X)$ associated to a Shimura datum $(G,X)$ where $G$ is a connected reductive group