Manipulate and control of the complex quantum system with high precision are essential for achieving universal fault tolerant quantum computing. For a physical system with restricted control resources, it is a challenge to control the dynamics of the target system efficiently and precisely under disturbances. Here we propose a multi-level dissipative quantum control framework and show that deep reinforcement learning provides an efficient way to identify the optimal strategies with restricted control parameters of the complex quantum system. This framework can be generalized to be applied to other quantum control models. Compared with the traditional optimal control method, this deep reinforcement learning algorithm can realize efficient and precise control for multi-level quantum systems with different types of disturbances.