We study the number and distribution of the limit cycles of a planar vector field whose component functions are random polynomials. We prove a lower bound on the average number of limit cycles when the random polynomials are sampled from the Kostlan-Shub-Smale ensemble. For the related Bargmann-Fock ensemble of real analytic functions we establish an asymptotic result for the average number of empty limit cycles (limit cycles that do not surround other limit cycles) in a large viewing window. Concerning the special setting of limit cycles near a randomly perturbed center focus (where the perturbation has i.i.d. coefficients) we prove that the number of limit cycles situated within a disk of radius less than unity converges almost surely to the number of real zeros of a certain random power series. We also consider infinitesimal perturbations where we obtain precise asymptotics on the global count of limit cycles for a family of models. The proofs of these results use novel combinations of techniques from dynamical systems and random analytic functions.