ﻻ يوجد ملخص باللغة العربية
Dy$_{2}$Zr$_{2}$O$_{7}$ a disordered pyrochlore system, exhibits the spin ice freezing under the application of magnetic field. Our studies suggest the stabilization of pyrochlore phase in Dy$_{2-x}$La$_{x}$Zr$_{2}$O$_{7}$ with the substitution of nonmagnetic La, along with the biphasic mixture for the intermediate compositions. We observed that the higher La compositions (1.5 $leq$ x $leq$ 1.9), show spin freezing (T $sim$ 17 K) similar to the field induced spin ice freezing for low La compositions (0 $leq$ x $leq$ 0.5), and the well known spin ice systems Dy$_{2}$Ti$_{2}$O$_{7}$ and Ho$_{2}$Ti$_{2}$O$_{7}$. The low temperature magnetic state for higher La compositions (1.5 $leq$ x $leq$ 1.9) culminates into spin glass state below 6 K. The Cole-Cole plot and Casimir-du Pr$acute{e}$ fit shows narrow distribution of spin relaxation time in these compounds.
By combining neutron scattering and magnetization measurements down to 80 mK, we determine the $(H,T)$ phase diagram of the Nd$_2$(Zr$_{1-x}$Ti$_x$)$_2$O$_7$ pyrochlore magnet compounds. In those samples, Zr is partially substituted by Ti, hence tuni
The pyrochlore oxides Dy$_{2}$Ti$_{2}$O$_{7}$ and Ho$_{2}$Ti$_{2}$O$_{7}$ are well studied spin ice systems and have shown the evidences of magnetic monopole excitations. Unlike these, Dy$_{2}$Zr$_{2}$O$_{7}$ is reported to crystallize in a distorted
We investigate the temperature dependence of the spin dynamics in the pyrochlore magnet Nd$_2$Zr$_2$O$_7$ by neutron scattering experiments. At low temperature, this material undergoes a transition towards an all in - all out antiferromagnetic phase
We use resonant elastic and inelastic X-ray scattering at the Ir-$L_3$ edge to study the doping-dependent magnetic order, magnetic excitations and spin-orbit excitons in the electron-doped bilayer iridate (Sr$_{1-x}$La$_{x}$)$_3$Ir$_2$O$_7$ ($0 leq x
A neutron scattering study of nonsuperconducting La$_{2-x}$Sr$_x$CaCu$_2$O$_6$ (x=0 and 0.2), a bilayer copper oxide without CuO chains, has revealed an unexpected tetragonal-to-orthorhombic transition with a doping dependent transition temperature.