ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of spin freezing transition and structural, magnetic phase diagram of Dy$_{2-x}$La$_x$Zr$_2$O$_7$; $x$ = 0-2.0

57   0   0.0 ( 0 )
 نشر من قبل C S Yadav Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dy$_{2}$Zr$_{2}$O$_{7}$ a disordered pyrochlore system, exhibits the spin ice freezing under the application of magnetic field. Our studies suggest the stabilization of pyrochlore phase in Dy$_{2-x}$La$_{x}$Zr$_{2}$O$_{7}$ with the substitution of nonmagnetic La, along with the biphasic mixture for the intermediate compositions. We observed that the higher La compositions (1.5 $leq$ x $leq$ 1.9), show spin freezing (T $sim$ 17 K) similar to the field induced spin ice freezing for low La compositions (0 $leq$ x $leq$ 0.5), and the well known spin ice systems Dy$_{2}$Ti$_{2}$O$_{7}$ and Ho$_{2}$Ti$_{2}$O$_{7}$. The low temperature magnetic state for higher La compositions (1.5 $leq$ x $leq$ 1.9) culminates into spin glass state below 6 K. The Cole-Cole plot and Casimir-du Pr$acute{e}$ fit shows narrow distribution of spin relaxation time in these compounds.



قيم البحث

اقرأ أيضاً

By combining neutron scattering and magnetization measurements down to 80 mK, we determine the $(H,T)$ phase diagram of the Nd$_2$(Zr$_{1-x}$Ti$_x$)$_2$O$_7$ pyrochlore magnet compounds. In those samples, Zr is partially substituted by Ti, hence tuni ng the exchange parameters and testing the robustness of the various phases. In all samples, the ground state remains all in / all out, while the field induces phase transitions towards new states characterized by 2 in - 2 out or 1 out - 3 in / 1 in - 3 out configurations. These transitions manifest as metamagnetic singularities in the magnetization vs field measurements. Strikingly, it is found that moderate substitution reinforces the stability of the all in / all out phase: the Neel temperature, the metamagnetic fields along with the ordered magnetic moment are higher in substituted samples with $x <$ 10%.
The pyrochlore oxides Dy$_{2}$Ti$_{2}$O$_{7}$ and Ho$_{2}$Ti$_{2}$O$_{7}$ are well studied spin ice systems and have shown the evidences of magnetic monopole excitations. Unlike these, Dy$_{2}$Zr$_{2}$O$_{7}$ is reported to crystallize in a distorted fluorite structure. We present here the magnetic and heat capacity studies of La substituted Dy$_{2}$Zr$_{2}$O$_{7}$. Our findings suggest the absence of spin ice state in Dy$_{2}$Zr$_{2}$O$_{7}$ but the emergence of the magnetic field induced spin freezing near T $approx$ 10 K in ac susceptibility measurements which is similar to Dy$_{2}$Ti$_{2}$O$_{7}$. The magnetic heat capacity of Dy$_{2}$Zr$_{2}$O$_{7}$ shows a shift in the peak position from 1.2 K in zero field to higher temperatures in the magnetic field, with the corresponding decrease in the magnetic entropy. The low temperature magnetic entropy at 5 kOe field is Rln2 - (1/2)Rln(3/2) which is same as for the spin ice state. Substitution of non-magnetic, isovalent La$^{3+}$ for Dy$^{3+}$ gradually induces the structural change from highly disordered fluorite to weakly ordered pyrochlore phase. The La$^{3+}$ substituted compounds with less distorted pyrochlore phase show the spin freezing at lower field which strengthens further on the application of magnetic field. Our results suggest that the spin ice state can be stabilized in Dy$_{2}$Zr$_{2}$O$_{7}$ either by slowing down of the spin dynamics or by strengthening the pyrochlore phase by suitable substitution in the system.
We investigate the temperature dependence of the spin dynamics in the pyrochlore magnet Nd$_2$Zr$_2$O$_7$ by neutron scattering experiments. At low temperature, this material undergoes a transition towards an all in - all out antiferromagnetic phase and the spin dynamics encompass a dispersion-less mode, characterized by a dynamical spin ice structure factor. Unexpectedly, this mode is found to survive above $T_{rm N} approx 300$ mK. Concomitantly, elastic correlations of the spin ice type develop. These are the signatures of a peculiar correlated paramagnetic phase which can be considered as a new example of Coulomb phase. Our observations near $T_{rm N}$ do not reproduce the signatures expected for a Higgs transition, but show reminiscent features of the all in - all out order superimposed on a Coulomb phase.
We use resonant elastic and inelastic X-ray scattering at the Ir-$L_3$ edge to study the doping-dependent magnetic order, magnetic excitations and spin-orbit excitons in the electron-doped bilayer iridate (Sr$_{1-x}$La$_{x}$)$_3$Ir$_2$O$_7$ ($0 leq x leq 0.065$). With increasing doping $x$, the three-dimensional long range antiferromagnetic order is gradually suppressed and evolves into a three-dimensional short range order from $x = 0$ to $0.05$, followed by a transition to two-dimensional short range order between $x = 0.05$ and $0.065$. Following the evolution of the antiferromagnetic order, the magnetic excitations undergo damping, anisotropic softening and gap collapse, accompanied by weakly doping-dependent spin-orbit excitons. Therefore, we conclude that electron doping suppresses the magnetic anisotropy and interlayer couplings and drives (Sr$_{1-x}$La$_x$)$_3$Ir$_2$O$_7$ into a correlated metallic state hosting two-dimensional short range antiferromagnetic order and strong antiferromagnetic fluctuations of $J_{text{eff}} = frac{1}{2}$ moments, with the magnon gap strongly suppressed.
118 - C. Ulrich , S. Kondo , M. Reehuis 2002
A neutron scattering study of nonsuperconducting La$_{2-x}$Sr$_x$CaCu$_2$O$_6$ (x=0 and 0.2), a bilayer copper oxide without CuO chains, has revealed an unexpected tetragonal-to-orthorhombic transition with a doping dependent transition temperature. The predominant structural modification below the transition is an in-plane shift of the apical oxygen. In the doped sample, the orthorhombic superstructure is strongly disordered, and a glassy state involving both magnetic and structural degrees of freedom develops at low temperature. The spin correlations are commensurate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا