ﻻ يوجد ملخص باللغة العربية
Robertson (1988) suggested a model for the realization space of a convex d-dimensional polytope and an approach via the implicit function theorem, which -- in the case of a full rank Jacobian -- proves that the realization space is a manifold of dimension NG(P):=d(f_0+f_{d-1})-f_{0,d-1}, which is the natural guess for the dimension given by the number of variables minus the number of quadratic equations that are used in the definition of the realization space. While this indeed holds for many natural classes of polytopes (including simple and simplicial polytopes, as well as all polytopes of dimension at most 3),and Robertson claimed this to be true for all polytopes, Mnevs (1986/1988) Universality Theorem implies that it is not true in general: Indeed, (1) the centered realization space is not a smoothly embedded manifold in general, and (2) it does not have the dimension NG(P) in general. In this paper we develop Jacobian criteria for the analysis of realization spaces. From these we get easily that for various large and natural classes of polytopes the realization spaces are indeed manifolds, whose dimensions are given by NG(P). However, we also identify the smallest polytopes where the dimension count (2) and thus Robertsons claim fails, among them the bipyramid over a triangular prism. For the property (1), we analyze the classical 24-cell: We show that the realization space has at least the dimension 48, and it has points where it is a manifold of this dimension, but it is not smoothly embedded as a manifold everywhere.
In this paper, we will describe the space spanned by the angle-sums of polytopes, recorded in the alpha-vector. We will consider the angles sums of simplices and the angles sums and face numbers of simplicial polytopes and general polytopes. We will
We introduce combinatorial types of arrangements of convex bodies, extending order types of point sets to arrangements of convex bodies, and study their realization spaces. Our main results witness a trade-off between the combinatorial complexity of
There is a well known construction of weakly continuous valuations on convex compact polytopes in R^n. In this paper we investigate when a special case of this construction gives a valuation which extends by continuity in the Hausdorff metric to all
Consider a random set of points on the unit sphere in $mathbb{R}^d$, which can be either uniformly sampled or a Poisson point process. Its convex hull is a random inscribed polytope, whose boundary approximates the sphere. We focus on the case $d=3$,
Suppose that $E$ and $E$ denote real Banach spaces with dimension at least 2, that $Dsubset E$ and $Dsubset E$ are domains, and that $f: Dto D$ is a homeomorphism. In this paper, we prove the following subinvariance property for the class of uniform