ﻻ يوجد ملخص باللغة العربية
The quantum many-body problem in condensed phases is often simplified using a quasiparticle description, such as effective mass theory for electron motion in a periodic solid. These approaches are often the basis for understanding many fundamental condensed phase processes, including the molecular mechanisms underlying solar energy harvesting and photocatalysis. Despite the importance of these effective particles, there is still a need for computational methods that can explore their behavior on chemically relevant length and time scales. This is especially true when the interactions between the particles and their environment are important. We introduce an approach for studying quasiparticles in condensed phases by combining effective mass theory with the path integral treatment of quantum particles. This framework incorporates the generally anisotropic electronic band structure of materials into path integral simulation schemes to enable modeling of quasiparticles in quantum confinement, for example. We demonstrate the utility of effective mass path integral simulations by modeling an exciton in solid potassium chloride and electron trapping by a sulfur vacancy in monolayer molybdenum disulfide.
We present an ab initio molecular dynamics (MD) investigation of the tautomeric equilibrium for aqueous solutions of glycine and acetone at realistic experimental conditions. Metadynamics is used to accelerate proton migration among tautomeric center
In computer simulations, quantum delocalization of atomic nuclei can be modeled making use of the Path Integral (PI) formulation of quantum statistical mechanics. This approach, however, comes with a large computational cost. By restricting the PI mo
Path integrals constitute powerful representations for both quantum and stochastic dynamics. Yet despite many decades of intensive studies, there is no consensus on how to formulate them for dynamics in curved space, or how to make them covariant wit
Classical molecular dynamics simulations have recently become a standard tool for the study of electrochemical systems. State-of-the-art approaches represent the electrodes as perfect conductors, modelling their responses to the charge distribution o
Path integral-based simulation methodologies play a crucial role for the investigation of nuclear quantum effects by means of computer simulations. However, these techniques are significantly more demanding than corresponding classical simulations. T