ﻻ يوجد ملخص باللغة العربية
Motivated by the spin-momentum locking of electrons at the boundaries of topological insulators, we study a one-dimensional system of spin-orbit coupled massless Dirac electrons with $s$-wave superconducting pairing. As a result of the spin-orbit coupling, our model has only two kinds of linearly dispersing modes, which we take to be right-moving spin-up and left-moving spin-down. Both lattice and continuum models are studied. In the lattice model, we find that a single Majorana zero energy mode appears at each end of a finite system provided that the $s$-wave pairing has an extended form, with the nearest-neighbor pairing being larger than the on-site pairing. We confirm this both numerically and analytically by calculating the winding number. Next we study a lattice version of a model with both Schrodinger and Dirac-like terms and find that the model hosts a topological transition between topologically trivial and non-trivial phases depending on the relative strength of the Schrodinger and Dirac terms. We then study a continuum system consisting of two $s$-wave superconductors with different phases of the pairing. Remarkably, we find that the system has a {it single} Andreev bound state which is localized at the junction. When the pairing phase difference crosses a multiple of $2 pi$, an Andreev bound state touches the top of the superconducting gap and disappears, and a different state appears from the bottom of the gap. We also study the AC Josephson effect in such a junction with a voltage bias that has both a constant $V_0$ and a term which oscillates with a frequency $omega$. We find that, in contrast to standard Josephson junctions, Shapiro plateaus appear when the Josephson frequency $omega_J= 2eV_0/hbar$ is a rational fraction of $omega$. We discuss experiments which can realize such junctions.
The excitation gap above the Majorana fermion (MF) modes at the ends of 1D topological superconducting (TS) semiconductor wires scales with the bulk quasiparticle gap E_{qp}. This gap, also called minigap, facilitates experimental detection of the pr
Among the major approaches that are being pursued for realizing quantum bits, the Majorana-based platform has been the most recent to be launched. It attempts to realize qubits which store quantum information in a topologically-protected manner. The
Second-order topological superconductors host Majorana corner and hingemodes in contrast to conventional edge and surface modes in two and three dimensions. However, the realization of such second-order corner modes usually demands unconventional sup
We study the low-energy transport properties of a hybrid device composed by a native quantum dot coupled to both ends of a topological superconducting nanowire section hosting Majorana zero-modes. The account of the coupling between the dot and the f
We propose an interferometer for chiral Majorana modes where the interference effect is caused and controlled by a Josephson junction of proximity-induced topological superconductors, hence, a Majorana-Josephson interferometer. This interferometer is