ترغب بنشر مسار تعليمي؟ اضغط هنا

Microscopic origin of magnetization reversal in exchange-coupled ferro-/ferrimagnetic bilayers

257   0   0.0 ( 0 )
 نشر من قبل Michael Heigl
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this study, the magnetic reversal process of exchange-coupled bilayer systems, consisting of a ferrimagnetic TbFeCo alloy layer and a ferromagnetic [Co/Ni/Pt]N multilayer, was investigated. In particular, minor loop studies, probing solely the reversal characteristics of the softer ferromagnetic layer, reveal two distinct reversal mechanisms, which depend strongly on the thickness of the ferromagnetic layer. For thick layers, irreversible switching of the macroscopic minor loop is observed. The underlying microscopic origin of this reversal process was studied in detail by high-resolution magnetic force microscopy, showing that the reversal is triggered by in-plane domain walls propagating through the ferromagnetic layer. In contrast, thin ferromagnetic layers show a hysteresis-free reversal, which is nucleation-dominated due to grain-to-grain variations in magnetic anisotropy of the Co/Ni/Pt multilayer and an inhomogeneous exchange coupling with the magnetically hard TbFeCo layer, as confirmed by micromagnetic simulations.



قيم البحث

اقرأ أيضاً

Exchange-coupled structures consisting of ferromagnetic and ferrimagnetic layers become technologically more and more important. We show experimentally the occurrence of completely reversible, hysteresis-free minor loops of [Co(0.2 nm)/Ni(0.4 nm)/Pt( 0.6 nm)]$_N$ multilayers exchange-coupled to a 20 nm thick ferrimagnetic Tb$_{28}$Co$_{14}$Fe$_{58}$ layer, acting as hard magnetic pinning layer. Furthermore, we present detailed theoretical investigations by means of micromagnetic simulations and most important a purely analytical derivation for the condition of the occurrence of full reversibility in magnetization reversal. Hysteresis-free loops always occur if a domain wall is formed during the reversal of the ferromagnetic layer and generates an intrinsic hard-axis bias field that overcomes the magnetic anisotropy field of the ferromagnetic layer. The derived condition further reveals that the magnetic anisotropy and the bulk exchange of both layers, as well as the exchange coupling strength and the thickness of the ferromagnetic layer play an important role for its reversibility.
103 - Wei Zhang , Qing-feng Zhan , 2011
A modified effective field model was developed to quantitatively interpret the angular dependent magnetization reversal processes in exchange biased Fe/IrMn bilayers. Several kinds of multi-step loops with distinct magnetization reversal routes were observed for the samples measured at various field orientations. Two types of angular dependent switching fields are observed and their transitions are investigated, which are found to be driven by both Fe and IrMn layer thicknesses. Our modified effective field model can nicely describe all the switching field behaviors including the critical effects of the exchange bias induced uniaxial anisotropy on the magnetization reversal processes.
A coupled atomistic spin and lattice dynamics approach is developed which merges the dynamics of these two degrees of freedom into a single set of coupled equations of motion. The underlying microscopic model comprises local exchange interactions bet ween the electron spin and magnetic moment and the local couplings between the electronic charge and lattice displacements. An effective action for the spin and lattice variables is constructed in which the interactions among the spin and lattice components are determined by the underlying electronic structure. In this way, expressions are obtained for the electronically mediated couplings between the spin and lattice degrees of freedom, besides the well known inter-atomic force constants and spin-spin interactions. These former susceptibilities provide an atomistic ab initio description for the coupled spin and lattice dynamics. It is important to notice that this theory is strictly bilinear in the spin and lattice variables and provides a minimal model for the coupled dynamics of these subsystems and that the two subsystems are treated on the same footing. Questions concerning time-reversal and inversion symmetry are rigorously addressed and it is shown how these aspects are absorbed in the tensor structure of the interaction fields. By means of these results regarding the spin-lattice coupling, simple explanations of ionic dimerization in double anti-ferromagnetic materials, as well as, charge density waves induced by a non-uniform spin structure are given. In the final parts, a set of coupled equations of motion for the combined spin and lattice dynamics are constructed, which subsequently can be reduced to a form which is analogous to the Landau-Lifshitz-Gilbert equations for spin dynamics and damped driven mechanical oscillator for the ...
We present a microscopic calculation of magnetization damping for a magnetic toy model. The magnetic system consists of itinerant carriers coupled antiferromagnetically to a dispersionless band of localized spins, and the magnetization damping is due to coupling of the itinerant carriers to a phonon bath in the presence of spin-orbit coupling. Using a mean-field approximation for the kinetic exchange model and assuming the spin-orbit coupling to be of the Rashba form, we derive Boltzmann scattering integrals for the distributions and spin coherences in the case of an antiferromagnetic exchange splitting, including a careful analysis of the connection between lifetime broadening and the magnetic gap. For the Elliott-Yafet type itinerant spin dynamics we extract dephasing and magnetization times T_1 and T_2 from initial conditions corresponding to a tilt of the magnetization vector, and draw a comparison to phenomenological equations such as the Landau-Lifshitz or the Gilbert damping. We also analyze magnetization precession and damping for this system including an anisotropy field and find a carrier mediated dephasing of the localized spin via the mean-field coupling.
By means of first principles calculations we investigate the nature of exchange coupling in ferromagnetic bcc Fe on a microscopic level. Analyzing the basic electronic structure reveals a drastic difference between the $3d$ orbitals of $E_g$ and $T_{ 2g}$ symmetries. The latter ones define the shape of the Fermi surface, while the former ones form weakly-interacting impurity levels. We demonstrate that, as a result of this, in Fe the $T_{2g}$ orbitals participate in exchange interactions, which are only weakly dependent on the configuration of the spin moments and thus can be classified as Heisenberg-like. These couplings are shown to be driven by Fermi surface nesting. In contrast, for the $E_g$ states the Heisenberg picture breaks down, since the corresponding contribution to the exchange interactions is shown to strongly depend on the reference state they are extracted from. Our analysis of the nearest-neighbour coupling indicates that the interactions among $E_g$ states are mainly proportional to the corresponding hopping integral and thus can be attributed to be of double-exchange origin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا