ترغب بنشر مسار تعليمي؟ اضغط هنا

UAV-Assisted Attack Prevention, Detection, and Recovery of 5G Networks

110   0   0.0 ( 0 )
 نشر من قبل Aly Sabri Abdalla
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Unmanned aerial vehicles (UAVs) are emerging as enablers for supporting many applications and services, such as precision agriculture, search and rescue, temporary network deployment or coverage extension, and security. UAVs are being considered for integration into emerging 5G networks as aerial users or network support nodes. We propose to leverage UAVs in 5G to assist in the prevention, detection, and recovery of attacks on 5G networks. Specifically, we consider jamming, spoofing, eavesdropping and the corresponding mitigation mechanisms that are enabled by the versatility of UAVs. We introduce the hot zone, safe zone and UAV-based secondary authorization entity, among others, to increase the resilience and confidentiality of 5G radio access networks and services. We present simulation results and discuss open issues and research directions, including the need for experimental evaluation and a research platform for prototyping and testing the proposed technologies.



قيم البحث

اقرأ أيضاً

Fifth Generation (5G) wireless networks are designed to meet various end-user Quality of Service (QoS) requirements through high data rates (typically of Gbps order) and low latencies. Coupled with Fog and Mobile Edge Computing (MEC), 5G can achieve high data rates, enabling complex autonomous smart city services such as the large deployment of self-driving vehicles and large-scale Artificial Intelligence (AI)-enabled industrial manufacturing. However, to meet the exponentially growing number of connected IoT devices and irregular data and service requests in both low and highly dense locations, the process of enacting traditional cells supported through fixed and costly base stations requires rethought to enable on-demand mobile access points in the form of Unmanned Aerial Vehicles (UAV) for diversified smart city scenarios. This article envisions a 5G network environment that is supported by blockchain-enabled UAVs to meet dynamic user demands with network access supply. The solution enables decentralized service delivery (Drones as a Service) and routing to and from end-users in a reliable and secure manner. Both public and private blockchains are deployed within the UAVs, supported by fog and cloud computing devices and data centers to provide wide range of complex authenticated service and data availability. Particular attention is paid tocomparing data delivery success rates and message exchange in the proposed solution against traditional UAV-supported cellular networks. Challenges and future research are also discussed with highlights on emerging technologies such as Federated Learning.
The deployment of unmanned aerial vehicles (UAVs) is proliferating as they are effective, flexible and cost-efficient devices for a variety of applications ranging from natural disaster recovery to delivery of goods. We investigate a transmission mec hanism aiming to improve the data rate between a base station (BS) and a user equipment through deploying multiple relaying UAVs. We consider the effect of interference, which is incurred by the nodes of another established communication network. Our primary goal is to design the 3D trajectories and power allocation for the UAVs to maximize the data flow while the interference constraint is met. The UAVs can reconfigure their locations to evade the unintended/intended interference caused by reckless/smart interferers. We also consider the scenario in which smart jammers chase the UAVs to degrade the communication quality. In this case, we investigate the problem from the perspective of both UAV network and smart jammers. An alternating-maximization approach is proposed to address the joint 3D trajectory design and power allocation problem. We handle the 3D trajectory design by resorting to spectral graph theory and subsequently address the power allocation through convex optimization techniques. Finally, we demonstrate the efficacy of our proposed method through simulations.
We consider the relaying application of unmanned aerial vehicles (UAVs), in which UAVs are placed between two transceivers (TRs) to increase the throughput of the system. Instead of studying the placement of UAVs as pursued in existing literature, we focus on investigating the placement of a jammer or a major source of interference on the ground to effectively degrade the performance of the system, which is measured by the maximum achievable data rate of transmission between the TRs. We demonstrate that the optimal placement of the jammer is in general a non-convex optimization problem, for which obtaining the solution directly is intractable. Afterward, using the inherent characteristics of the signal-to-interference ratio (SIR) expressions, we propose a tractable approach to find the optimal position of the jammer. Based on the proposed approach, we investigate the optimal positioning of the jammer in both dual-hop and multi-hop UAV relaying settings. Numerical simulations are provided to evaluate the performance of our proposed method.
An integrated access and backhaul (IAB) network architecture can enable flexible and fast deployment of next-generation cellular networks. However, mutual interference between access and backhaul links, small inter-site distance and spatial dynamics of user distribution pose major challenges in the practical deployment of IAB networks. To tackle these problems, we leverage the flying capabilities of unmanned aerial vehicles (UAVs) as hovering IAB-nodes and propose an interference management algorithm to maximize the overall sum rate of the IAB network. In particular, we jointly optimize the user and base station associations, the downlink power allocations for access and backhaul transmissions, and the spatial configurations of UAVs. We consider two spatial configuration modes of UAVs: distributed UAVs and drone antenna array (DAA), and show how they are intertwined with the spatial distribution of ground users. Our numerical results show that the proposed algorithm achieves an average of $2.9times$ and $6.7times$ gains in the received downlink signal-to-interference-plus-noise ratio (SINR) and overall network sum rate, respectively. Finally, the numerical results reveal that UAVs cannot only be used for coverage improvement but also for capacity boosting in IAB cellular networks.
In this paper, we propose a joint radio and core resource allocation framework for NFV-enabled networks. In the proposed system model, the goal is to maximize energy efficiency (EE), by guaranteeing end-to-end (E2E) quality of service (QoS) for diffe rent service types. To this end, we formulate an optimization problem in which power and spectrum resources are allocated in the radio part. In the core part, the chaining, placement, and scheduling of functions are performed to ensure the QoS of all users. This joint optimization problem is modeled as a Markov decision process (MDP), considering time-varying characteristics of the available resources and wireless channels. A soft actor-critic deep reinforcement learning (SAC-DRL) algorithm based on the maximum entropy framework is subsequently utilized to solve the above MDP. Numerical results reveal that the proposed joint approach based on the SAC-DRL algorithm could significantly reduce energy consumption compared to the case in which R-RA and NFV-RA problems are optimized separately.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا