ﻻ يوجد ملخص باللغة العربية
The ternary-arsenide compound BaCo2As2 was previously proposed to be in proximity to a quantum-critical point where long-range ferromagnetic (FM) order is suppressed by quantum fluctuations. Here we report the effect of Ir substitution for Co on the magnetic and thermal properties of Ba[Co(1-x)Ir(x)]2As2 (0 <= x <= 0.25) single crystals. These compositions all crystallize in an uncollapsed body-centered-tetragonal ThCr2Si2 structure with space group I4/mmm. Magnetic susceptibility measurements reveal clear signatures of FM ordering for x >= 0.11 with a nearly composition-independent Curie temperature TC = 13 K. The small variation of TC with x, the occurrence of hysteresis in magnetization versus field isotherms at low field and temperature, very small spontaneous and remanent magnetizations < 0.01 muB/f.u., and thermomagnetic irreversibility in the low-temperature region together indicate that the FM response arises from short-range FM ordering of spin clusters as previously inferred to occur in Ca[Co{1-x}Ir{x}]{2-y}As2. Heat-capacity Cp(T) data do not exhibit any clear feature around TC, further indicating that the FM ordering is short-range and/or associated with itinerant moments. The Cp(T) in the paramagnetic temperature regime 25-300 K is well described by the sum of a Sommerfeld electronic contribution and Debye and Einstein lattice contributions where the latter suggests the occurrence of low-frequency optic modes associated with the heavy Ba atoms in the crystals.
We report the synthesis of single crystals of a novel layered iridate Ba$_{21}$Ir$_9$O$_{43}$, and present the crystallographic, transport and magnetic properties of this material. The compound has a hexagonal structure with two iridium oxide layers
Single crystals of Ca[Co_(2-x)Ir_(x)]_(2-y)As2 with 0 <= x <= 0.35 and 0.10 <= y <= 0.14 have been grown using the self-flux technique and characterized by single-crystal x-ray diffraction (XRD), energy-dispersive x-ray spectroscopy, magnetization M
We demonstrate that the thermopower (S) can be used to probe the spin fluctuations (SFs) in proximity to the quantum critical point (QCP) in Fe-based superconductors. The sensitivity of S to the entropy of charge carriers allows us to observe an incr
We report thermoelectric properties of Ir$_{1-x}$Rh$_x$Te$_2$ ($0 leqslant x leqslant 0.3$) alloy series where superconductivity at low temperatures emerges as the high-temperature structural transition ($T_s$) is suppressed. The isovalent ionic subs
We investigate the effect of Ni${text -}$substitution on the crystalline structure and the critical behavior of $Nd_{0.6}Sr_{0.4}Mn_{1-x}Ni_{x}O_{3}$ (0.00 $leq$ x $leq$ 0.20) perovskite. X${text -}$ray diffraction patterns revealed that the major ph