ﻻ يوجد ملخص باللغة العربية
The increasing reliance on renewable energy generation means that storage may well play a much greater role in the balancing of future electricity systems. We show how heterogeneous stores, differing in capacity and rate constraints, may be optimally, or nearly optimally, scheduled to assist in such balancing, with the aim of minimising the total imbalance (unserved energy) over any given period of time. It further turns out that in many cases the optimal policies are such that the optimal decision at each point in time is independent of the future evolution of the supply-demand balance in the system, so that these policies remain optimal in a stochastic environment.
It is likely that electricity storage will play a significant role in the balancing of future energy systems. A major challenge is then that of how to assess the contribution of storage to capacity adequacy, i.e. to the ability of such systems to mee
We study how storage, operating as a price maker within a market environment, may be optimally operated over an extended period of time. The optimality criterion may be the maximisation of the profit of the storage itself, where this profit results f
This paper considers the optimal dispatch of energy-constrained heterogeneous storage units to maximise security of supply. A policy, requiring no knowledge of the future, is presented and shown to minimise unserved energy during supply-shortfall eve
This paper presents a framework for deriving the storage capacity that an electricity system requires in order to satisfy a chosen risk appetite. The framework takes as inputs user-defined event categories, parameterised by peak power-not-served, acc
Reduced installation and operating costs give energy storage systems an opportunity to participate actively and profitably in electricity markets. In addition to providing ancillary services, energy storage systems can also arbitrage temporal price d