ﻻ يوجد ملخص باللغة العربية
Spatial statistics often involves Cholesky decomposition of covariance matrices. To ensure scalability to high dimensions, several recent approximations have assumed a sparse Cholesky factor of the precision matrix. We propose a hierarchical Vecchia approximation, whose conditional-independence assumptions imply sparsity in the Cholesky factors of both the precision and the covariance matrix. This remarkable property is crucial for applications to high-dimensional spatio-temporal filtering. We present a fast and simple algorithm to compute our hierarchical Vecchia approximation, and we provide extensions to non-linear data assimilation with non-Gaussian data based on the Laplace approximation. In several numerical comparisons, our methods strongly outperformed alternative approaches.
Riemann manifold Hamiltonian Monte Carlo (RMHMC) has the potential to produce high-quality Markov chain Monte Carlo-output even for very challenging target distributions. To this end, a symmetric positive definite scaling matrix for RMHMC, which deri
The smoothly clipped absolute deviation (SCAD) and the minimax concave penalty (MCP) penalized regression models are two important and widely used nonconvex sparse learning tools that can handle variable selection and parameter estimation simultaneou
A current challenge for many Bayesian analyses is determining when to terminate high-dimensional Markov chain Monte Carlo simulations. To this end, we propose using an automated sequential stopping procedure that terminates the simulation when the co
In this article, we consider the sparse tensor singular value decomposition, which aims for dimension reduction on high-dimensional high-order data with certain sparsity structure. A method named Sparse Tensor Alternating Thresholding for Singular Va
Algorithms involving Gaussian processes or determinantal point processes typically require computing the determinant of a kernel matrix. Frequently, the latter is computed from the Cholesky decomposition, an algorithm of cubic complexity in the size