Magnetic skyrmions hold promise for spintronic devices. To explore the dynamical properties of skyrmions in devices, a nanoscale method to image spin textures in response to a stimulus is essential. Here, we apply a technique for operando electrical current pulsing of chiral magnetic devices in a Lorentz transmission electron microscope. In ferromagnetic multilayers with interfacial Dzyaloshinskii-Moriya interaction (DMI), we study the creation and annihilation of skyrmions localized by point-like pinning sites due to defects. Using a combination of experimental and micromagnetic techniques, we establish a thermal contribution for the creation and annihilation of skyrmions in our study. Our work reveals a mechanism for controlling skyrmion density, which enables an examination of skyrmion magnetic field stability as a function of density. We find that high-density skyrmion states are more stable than low-density states or isolated skyrmions resisting annihilation over a magnetic field range that increases monotonically with density.