Interior-Boundary Conditions for the Dirac Equation at Point Sources in 3 Dimensions


الملخص بالإنكليزية

A recently proposed approach for avoiding the ultraviolet divergence of Hamiltonians with particle creation is based on interior-boundary conditions (IBCs). The approach works well in the non-relativistic case, that is, for the Laplacian operator. Here, we study how the approach can be applied to Dirac operators. While this has been done successfully already in 1 space dimension, and more generally for codimension-1 boundaries, the situation of point sources in 3 dimensions corresponds to a codimension-3 boundary. One would expect that, for such a boundary, Dirac operators do not allow for boundary conditions because they are known not to allow for point interactions in 3d, which also correspond to a boundary condition. And indeed, we confirm this expectation here by proving that there is no self-adjoint operator on (a truncated) Fock space that would correspond to a Dirac operator with an IBC at configurations with a particle at the origin. However, we also present a positive result showing that there are self-adjoint operators with IBC (on the boundary consisting of configurations with a particle at the origin) that are, away from those configurations, given by a Dirac operator plus a sufficiently strong Coulomb potential.

تحميل البحث