ترغب بنشر مسار تعليمي؟ اضغط هنا

Oxidation states, Thouless pumps, and non-trivial ionic transport in non-stoichiometric electrolytes

70   0   0.0 ( 0 )
 نشر من قبل Paolo Pegolo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thouless quantization of adiabatic particle transport permits to associate an integer topological charge with each atom of an electronically gapped material. If these charges are additive and independent of atomic positions, they provide a rigorous definition of atomic oxidation states and atoms can be identified as integer-charge carriers in ionic conductors. Whenever these conditions are met, charge transport is necessarily convective, i.e. it cannot occur without substantial ionic flow, a transport regime that we dub trivial. We show that the topological requirements that allow these conditions to be broken are the same that would determine a Thouless pump mechanism if the system were subject to a suitably defined time-periodic Hamiltonian. The occurrence of these requirements determines a non-trivial transport regime whereby charge can flow without any ionic convection, even in electronic insulators. These results are first demonstrated with a couple of simple molecular models that display a quantum pump mechanism upon introduction of a fictitious time dependence of the atomic positions along a closed loop in configuration space. We finally examine the impact of our findings on the transport properties of non-stoichiometric alkali-halide melts, where the same topological conditions that would induce a quantum pump mechanism along certain closed loops in configuration space also determine a non-trivial transport regime such that most of the total charge current results to be uncorrelated from the ionic ones.



قيم البحث

اقرأ أيضاً

Achieving true bulk insulating behavior in Bi$_2$Se$_3$, the archetypal topological insulator with a simplistic one-band electronic structure and sizable band gap, has been prohibited by a well-known self-doping effect caused by selenium vacancies, w hose extra electrons shift the chemical potential into the bulk conduction band. We report a new synthesis method for achieving stoichiometric Bi$_2$Se$_3$ crystals that exhibit nonmetallic behavior in electrical transport down to low temperatures. Hall effect measurements indicate the presence of both electron- and hole-like carriers, with the latter identified with surface state conduction and the achievement of ambipolar transport in bulk Bi$_2$Se$_3$ crystals without gating techniques. With carrier mobilities surpassing the highest values yet reported for topological surface states in this material, the achievement of ambipolar transport via upward band bending is found to provide a key method to advancing the potential of this material for future study and applications.
The synthesis of new materials with novel or useful properties is one of the most important drivers in the fields of condensed matter physics and materials science. Discoveries of this kind are especially significant when they point to promising futu re basic research and applications. Van der Waals bonded materials comprised of lower-dimensional building blocks have been shown to exhibit emergent properties when isolated in an atomically thin form1-8. Here, we report the discovery of a transition metal chalcogenide in a heretofore unknown segmented linear chain form, where basic building blocks each consisting of two hafnium atoms and nine tellurium atoms (Hf2Te9) are van der Waals bonded end-to-end. First-principle calculations based on density functional theory reveal striking crystal-symmetry-related features in the electronic structure of the segmented chain, including giant spin splitting and nontrivial topological phases of selected energy band states. Atomic-resolution scanning transmission electron microscopy reveals single segmented Hf2Te9 chains isolated within the hollow cores of carbon nanotubes, with a structure consistent with theoretical predictions. Van der Waals-bonded segmented linear chain transition metal chalcogenide materials could open up new opportunities in low-dimensional, gate-tunable, magnetic and topological crystalline systems.
245 - Yuefeng Nie , Ye Zhu , Che-hui Lee 2014
Complex oxide heterostructures display some of the most chemically abrupt, atomically precise interfaces, which is advantageous when constructing new interface phases with emergent properties by juxtaposing incompatible ground states. One might assum e that atomically precise interfaces result from stoichiometric growth, but here we show that the most precise control is obtained for non-stoichiometric growth where differing surface energies can be compensated by surfactant-like effects. For the precise growth of Sr$_{n+1}$Ti$_n$O$_{3n+1}$ Ruddlesden-Popper (RP) phases, stoichiometric deposition leads to the loss of the first RP rock-salt double layer, but growing with a strontium-rich surface layer restores the bulk stoichiometry and ordering of the subsurface RP structure. Our results dramatically expand the materials that can be prepared in epitaxial heterostructures with precise interface control---from just the $n=infty$ end members (perovskites) to the entire RP family---enabling the exploration of novel quantum phenomena at a richer variety of oxide interfaces.
We study the 2d phase transition of a driven-dissipative system of exciton-polaritons under non-resonant pumping. Stochastic calculations are used to investigate the Berezinskii-Kosterlitz-Thouless-like phase diagram for experimentally realistic para meters, with a special attention to the non-equilibrium features.
Quantum materials with non-trivial band topology and bulk superconductivity are considered superior materials to realize topological superconductivity. In this regard, we report detailed Density Functional Theory (DFT) calculations and Z2 invaraints for the NbC superconductor, exhibiting its band structure to be topologically non-trivial. Bulk superconductivity at 8.9K is confirmed through DC magnetization measurements under Field Cooled (FC) and Zero Field Cooled (ZFC) protocols. This superconductivity is found to be of type-II nature as revealed by isothermal M-H measurements and thus calculated the Ginzberg-Landau parameter. A large intermediate state is evident from the phase diagram, showing NbC to be a strong type-II superconductor. Comparing with earlier reports on superconducting NbC, a non-monotonic relationship of critical temperature with lattice parameters is seen. In conclusion, NbC is a type-II around 10K superconductor with topological non-trivial surface states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا