ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrino amplitude decomposition: Toward observing the atmospheric - solar wave interference

73   0   0.0 ( 0 )
 نشر من قبل Hisakazu Minakata
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Hisakazu Minakata




اسأل ChatGPT حول البحث

Observation of the interference between the atmospheric and solar oscillation waves with the correct magnitude would provide another manifestation of the three-generation structure of leptons. As a prerequisite for such analyses we develop a method for decomposing the oscillation $S$ matrix into the atmospheric and solar amplitudes. Though the similar method was recently proposed successfully in vacuum, once an extension into the matter environment is attempted, it poses highly nontrivial problems. Even for an infinitesimal matter potential, inherent mixture of the atmospheric and solar oscillation waves occurs, rendering a simple extension of the vacuum definition untenable. We utilize general kinematic structure as well as analyses of the five perturbative frameworks, in which the nature of matter-dressed atmospheric and solar oscillations are known, to understand the origin of the trouble, how to deal with the difficulty, and to grasp the principle of decomposition. Then, we derive the amplitude decomposition formulas in these frameworks, and discuss properties of the decomposed probabilities. We mostly discuss the $ u_{mu} rightarrow u_{e}$ channel, but a comparison with the $ u_{mu} rightarrow u_{tau}$ channel reveals an interesting difference.



قيم البحث

اقرأ أيضاً

55 - Hisakazu Minakata 2020
Observation of the interference between the atmospheric-scale and solar-scale oscillations is one of the challenging and tantalizing goals of the ongoing and upcoming neutrino experiments. An inevitable first step required for such analyses is to est ablish the way of how the oscillation $S$ matrix can be decomposed into the atmospheric and solar waves, the procedure dubbed as the amplitude decomposition. In this paper, with use of the perturbative framework proposed by Denton et al. (DMP), we establish the prescription for amplitude decomposition which covers the whole kinematical region of the terrestrial neutrino experiments. We analyze the limits to the atmospheric- and solar-resonance regions to argue that the dynamical two modes of the DMP decomposition can be interpreted as the matter-dressed atmospheric and solar oscillations. The expressions of the oscillation probability, which are decomposed into the non-interference and interference terms, are derived for all the relevant flavor oscillation channels. Through construction of the DMP decomposition, we reveal the nature of $psi$ ($theta_{12}$ in matter) symmetry as due to the $S$ matrix rephasing invariance. A new picture of the DMP perturbation theory emerged, a unified perturbative framework for neutrino oscillation in earth matter.
We propose to detect the interference effect between the atmospheric-scale and solar-scale waves of neutrino oscillation, one of the key consequences of the three-generation structure of leptons. In vacuum, we show that there is a natural and general way of decomposing the oscillation amplitude into these two oscillation modes. The nature of the interference is cleanest in the $bar{ u}_e$ disappearance channel since it is free from the CP-phase $delta$. We find that the upcoming JUNO experiment offers an ideal setting to observe this interference with more than $4,sigma$ significance, even under conservative assumptions about the systematic uncertainties.
The breaking of time reversal symmetry via the spontaneous formation of chiral order is ubiquitous in nature. Here, we present an unambiguous demonstration of this phenomenon for atoms Bose-Einstein condensed in the second Bloch band of an optical la ttice. As a key tool we use a matter wave interference technique, which lets us directly observe the phase properties of the superfluid order parameter and allows us to reconstruct the spatial geometry of certain low energy excitations, associated with the formation of domains of different chirality. Our work marks a new era of optical lattices where orbital degrees of freedom play an essential role for the formation of exotic quantum matter, similarly as in electronic systems.
We evaluate the prompt atmospheric neutrino flux including nuclear correction and $B$ hadron contribution in the different frameworks: NLO perturbative QCD and dipole models. The nuclear effect is larger in the prompt neutrino flux than in the total charm production cross section, and it reduces the fluxes by $10% - 30%$ depending on the model. We also investigate the uncertainty using the QCD scales allowed by the charm cross section data from RHIC and LHC experiments.
124 - R. Foot , C. N. Leung , O. Yasuda 1998
Recent Super-Kamiokande data on the atmospheric neutrino anomaly are used to test various mechanisms for neutrino oscillations. It is found that the current atmospheric neutrino data alone cannot rule out any particular mechanism. Future long-baselin e experiments should play an important role in identifying the underlying neutrino oscillation mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا