ﻻ يوجد ملخص باللغة العربية
Menger conjectured that subsets of R with the Menger property must be ${sigma}$-compact. While this is false when there is no restriction on the subsets of R, for projective subsets it is known to follow from the Axiom of Projective Determinacy, which has considerable large cardinal consistency strength. We note that in fact, Mengers conjecture for projective sets has consistency strength of only an inaccessible cardinal.
Menger conjectured that subsets of $mathbb R$ with the Menger property must be $sigma$-compact. While this is false when there is no restriction on the subsets of $mathbb R$, for projective subsets it is known to follow from the Axiom of Projective D
We prove that every usco multimap $Phi:Xto Y$ from a metrizable separable space $X$ to a GO-space $Y$ has an $F_sigma$-measurable selection. On the other hand, for the split interval $ddot{mathbb I}$ and the projection $P:ddot{mathbb I}^2to{mathbb I}
We provide conceptual proofs of the two most fundamental theorems concerning topological games and open covers: Hurewiczs Theorem concerning the Menger game, and Pawlikowskis Theorem concerning the Rothberger game.
We establish that if it is consistent that there is a supercompact cardinal, then it is consistent that every locally compact, hereditarily normal space which does not include a perfect pre-image of omega_1 is hereditarily paracompact.