ﻻ يوجد ملخص باللغة العربية
Bayesian optimization is a sequential decision making framework for optimizing expensive-to-evaluate black-box functions. Computing a full lookahead policy amounts to solving a highly intractable stochastic dynamic program. Myopic approaches, such as expected improvement, are often adopted in practice, but they ignore the long-term impact of the immediate decision. Existing nonmyopic approaches are mostly heuristic and/or computationally expensive. In this paper, we provide the first efficient implementation of general multi-step lookahead Bayesian optimization, formulated as a sequence of nested optimization problems within a multi-step scenario tree. Instead of solving these problems in a nested way, we equivalently optimize all decision variables in the full tree jointly, in a ``one-shot fashion. Combining this with an efficient method for implementing multi-step Gaussian process ``fantasization, we demonstrate that multi-step expected improvement is computationally tractable and exhibits performance superior to existing methods on a wide range of benchmarks.
This paper concerns the problem of 1-bit compressed sensing, where the goal is to estimate a sparse signal from a few of its binary measurements. We study a non-convex sparsity-constrained program and present a novel and concise analysis that moves a
Decision-based attacks (DBA), wherein attackers perturb inputs to spoof learning algorithms by observing solely the output labels, are a type of severe adversarial attacks against Deep Neural Networks (DNNs) requiring minimal knowledge of attackers.
The alternating direction method of multipliers (ADMM) is a popular approach for solving optimization problems that are potentially non-smooth and with hard constraints. It has been applied to various computer graphics applications, including physica
Hyperparameter optimization (HPO) is a central pillar in the automation of machine learning solutions and is mainly performed via Bayesian optimization, where a parametric surrogate is learned to approximate the black box response function (e.g. vali
In few-shot domain adaptation (FDA), classifiers for the target domain are trained with accessible labeled data in the source domain (SD) and few labeled data in the target domain (TD). However, data usually contain private information in the current