ﻻ يوجد ملخص باللغة العربية
The recently proposed regularized Lovelock tensors are kinetically coupled to the scalar field. The resulting equation of motion is second order. In particular, it is found that when the $p=3$ regularized Lovelock tensor is kinetically coupled to the scalar field, the scalar field is the potential candidate of cosmic dark energy.
A four-dimensional regularization of Lovelock-Lanczos gravity up to an arbitrary curvature order is considered. We show that Lovelock-Lanczos terms can provide a non-trivial contribution to the Einstein field equations in four dimensions, for spheric
It is found that, when the coupling constants $alpha_p$ in the theory of regularized Lovelock gravity are properly chosen and the number of Lovelock tensors $prightarrow infty$, there exist a fairly large number of nonsingular (singularity free) blac
The present work aims to explore the model given by Lanczos-Lovelock gravity theories indexed by a fixed integer to require a unique anti-de Sitter vacuum, dressed by a scalar field non-minimal coupling. For this model, we add a special matter source
We study the solutions of the wave equation where a massless scalar field is coupled to the Wahlquist metric, a type-D solution. We first take the full metric and then write simplifications of the metric by taking some of the constants in the metric
Solution generating techniques for general relativity with a conformally (and minimally) coupled scalar field are pushed forward to build a wide class of asymptotically flat, axisymmetric and stationary spacetimes continuously connected to Kerr. This