ﻻ يوجد ملخص باللغة العربية
When estimating the risk of a financial position with empirical data or Monte Carlo simulations via a tail-dependent law invariant risk measure such as the Conditional Value-at-Risk (CVaR), it is important to ensure the robustness of the statistical estimator particularly when the data contain noise. Kru007fatscher et al. [1] propose a new framework to examine the qualitative robustness of estimators for tail-dependent law invariant risk measures on Orlicz spaces, which is a step further from earlier work for studying the robustness of risk measurement procedures by Cont et al. [2]. In this paper, we follow the stream of research to propose a quantitative approach for verifying the statistical robustness of tail-dependent law invariant risk measures. A distinct feature of our approach is that we use the Fortet-Mourier metric to quantify the variation of the true underlying probability measure in the analysis of the discrepancy between the laws of the plug-in estimators of law invariant risk measure based on the true data and perturbed data, which enables us to derive an explicit error bound for the discrepancy when the risk functional is Lipschitz continuous with respect to a class of admissible laws. Moreover, the newly introduced notion of Lipschitz continuity allows us to examine the degree of robustness for tail-dependent risk measures. Finally, we apply our quantitative approach to some well-known risk measures to illustrate our theory.
In this paper, we show that, on classical model spaces including Orlicz spaces, every real-valued, law-invariant, coherent risk measure automatically has the Fatou property at every point whose negative part has a thin tail.
We provide a variety of results for (quasi)convex, law-invariant functionals defined on a general Orlicz space, which extend well-known results in the setting of bounded random variables. First, we show that Delbaens representation of convex function
This paper gives an overview of the theory of dynamic convex risk measures for random variables in discrete time setting. We summarize robust representation results of conditional convex risk measures, and we characterize various time consistency pro
In order to evaluate the quality of the scientific research, we introduce a new family of scientific performance measures, called Scientific Research Measures (SRM). Our proposal originates from the more recent developments in the theory of risk meas
In this paper, we introduce the rich classes of conditional distortion (CoD) risk measures and distortion risk contribution ($Delta$CoD) measures as measures of systemic risk and analyze their properties and representations. The classes include the w