ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimization and Generalization of Shallow Neural Networks with Quadratic Activation Functions

111   0   0.0 ( 0 )
 نشر من قبل Stefano Sarao Mannelli
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the dynamics of optimization and the generalization properties of one-hidden layer neural networks with quadratic activation function in the over-parametrized regime where the layer width $m$ is larger than the input dimension $d$. We consider a teacher-student scenario where the teacher has the same structure as the student with a hidden layer of smaller width $m^*le m$. We describe how the empirical loss landscape is affected by the number $n$ of data samples and the width $m^*$ of the teacher network. In particular we determine how the probability that there be no spurious minima on the empirical loss depends on $n$, $d$, and $m^*$, thereby establishing conditions under which the neural network can in principle recover the teacher. We also show that under the same conditions gradient descent dynamics on the empirical loss converges and leads to small generalization error, i.e. it enables recovery in practice. Finally we characterize the time-convergence rate of gradient descent in the limit of a large number of samples. These results are confirmed by numerical experiments.



قيم البحث

اقرأ أيضاً

We consider the teacher-student setting of learning shallow neural networks with quadratic activations and planted weight matrix $W^*inmathbb{R}^{mtimes d}$, where $m$ is the width of the hidden layer and $dle m$ is the data dimension. We study the o ptimization landscape associated with the empirical and the population squared risk of the problem. Under the assumption the planted weights are full-rank we obtain the following results. First, we establish that the landscape of the empirical risk admits an energy barrier separating rank-deficient $W$ from $W^*$: if $W$ is rank deficient, then its risk is bounded away from zero by an amount we quantify. We then couple this result by showing that, assuming number $N$ of samples grows at least like a polynomial function of $d$, all full-rank approximate stationary points of the empirical risk are nearly global optimum. These two results allow us to prove that gradient descent, when initialized below the energy barrier, approximately minimizes the empirical risk and recovers the planted weights in polynomial-time. Next, we show that initializing below this barrier is in fact easily achieved when the weights are randomly generated under relatively weak assumptions. We show that provided the network is sufficiently overparametrized, initializing with an appropriate multiple of the identity suffices to obtain a risk below the energy barrier. At a technical level, the last result is a consequence of the semicircle law for the Wishart ensemble and could be of independent interest. Finally, we study the minimizers of the empirical risk and identify a simple necessary and sufficient geometric condition on the training data under which any minimizer has necessarily zero generalization error. We show that as soon as $Nge N^*=d(d+1)/2$, randomly generated data enjoys this geometric condition almost surely, while that ceases to be true if $N<N^*$.
While deep learning is successful in a number of applications, it is not yet well understood theoretically. A satisfactory theoretical characterization of deep learning however, is beginning to emerge. It covers the following questions: 1) representa tion power of deep networks 2) optimization of the empirical risk 3) generalization properties of gradient descent techniques --- why the expected error does not suffer, despite the absence of explicit regularization, when the networks are overparametrized? In this review we discuss recent advances in the three areas. In approximation theory both shallow and deep networks have been shown to approximate any continuous functions on a bounded domain at the expense of an exponential number of parameters (exponential in the dimensionality of the function). However, for a subset of compositional functions, deep networks of the convolutional type can have a linear dependence on dimensionality, unlike shallow networks. In optimization we discuss the loss landscape for the exponential loss function and show that stochastic gradient descent will find with high probability the global minima. To address the question of generalization for classification tasks, we use classical uniform convergence results to justify minimizing a surrogate exponential-type loss function under a unit norm constraint on the weight matrix at each layer -- since the interesting variables for classification are the weight directions rather than the weights. Our approach, which is supported by several independent new results, offers a solution to the puzzle about generalization performance of deep overparametrized ReLU networks, uncovering the origin of the underlying hidden complexity control.
It is well-known that overparametrized neural networks trained using gradient-based methods quickly achieve small training error with appropriate hyperparameter settings. Recent papers have proved this statement theoretically for highly overparametri zed networks under reasonable assumptions. These results either assume that the activation function is ReLU or they crucially depend on the minimum eigenvalue of a certain Gram matrix depending on the data, random initialization and the activation function. In the later case, existing works only prove that this minimum eigenvalue is non-zero and do not provide quantitative bounds. On the empirical side, a contemporary line of investigations has proposed a number of alternative activation functions which tend to perform better than ReLU at least in some settings but no clear understanding has emerged. This state of affairs underscores the importance of theoretically understanding the impact of activation functions on training. In the present paper, we provide theoretical results about the effect of activation function on the training of highly overparametrized 2-layer neural networks. A crucial property that governs the performance of an activation is whether or not it is smooth. For non-smooth activations such as ReLU, SELU and ELU, all eigenvalues of the associated Gram matrix are large under minimal assumptions on the data. For smooth activations such as tanh, swish and polynomials, the situation is more complex. If the subspace spanned by the data has small dimension then the minimum eigenvalue of the Gram matrix can be small leading to slow training. But if the dimension is large and the data satisfies another mild condition, then the eigenvalues are large. If we allow deep networks, then the small data dimension is not a limitation provided that the depth is sufficient. We discuss a number of extensions and applications of these results.
In this work, we propose to employ information-geometric tools to optimize a graph neural network architecture such as the graph convolutional networks. More specifically, we develop optimization algorithms for the graph-based semi-supervised learnin g by employing the natural gradient information in the optimization process. This allows us to efficiently exploit the geometry of the underlying statistical model or parameter space for optimization and inference. To the best of our knowledge, this is the first work that has utilized the natural gradient for the optimization of graph neural networks that can be extended to other semi-supervised problems. Efficient computations algorithms are developed and extensive numerical studies are conducted to demonstrate the superior performance of our algorithms over existing algorithms such as ADAM and SGD.
Recent research has highlighted the role of relational inductive biases in building learning agents that can generalize and reason in a compositional manner. However, while relational learning algorithms such as graph neural networks (GNNs) show prom ise, we do not understand how effectively these approaches can adapt to new tasks. In this work, we study the task of logical generalization using GNNs by designing a benchmark suite grounded in first-order logic. Our benchmark suite, GraphLog, requires that learning algorithms perform rule induction in different synthetic logics, represented as knowledge graphs. GraphLog consists of relation prediction tasks on 57 distinct logical domains. We use GraphLog to evaluate GNNs in three different setups: single-task supervised learning, multi-task pretraining, and continual learning. Unlike previous benchmarks, our approach allows us to precisely control the logical relationship between the different tasks. We find that the ability for models to generalize and adapt is strongly determined by the diversity of the logical rules they encounter during training, and our results highlight new challenges for the design of GNN models. We publicly release the dataset and code used to generate and interact with the dataset at https://www.cs.mcgill.ca/~ksinha4/graphlog.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا