ﻻ يوجد ملخص باللغة العربية
The symplectic Stiefel manifold, denoted by $mathrm{Sp}(2p,2n)$, is the set of linear symplectic maps between the standard symplectic spaces $mathbb{R}^{2p}$ and $mathbb{R}^{2n}$. When $p=n$, it reduces to the well-known set of $2ntimes 2n$ symplectic matrices. Optimization problems on $mathrm{Sp}(2p,2n)$ find applications in various areas, such as optics, quantum physics, numerical linear algebra and model order reduction of dynamical systems. The purpose of this paper is to propose and analyze gradient-descent methods on $mathrm{Sp}(2p,2n)$, where the notion of gradient stems from a Riemannian metric. We consider a novel Riemannian metric on $mathrm{Sp}(2p,2n)$ akin to the canonical metric of the (standard) Stiefel manifold. In order to perform a feasible step along the antigradient, we develop two types of search strategies: one is based on quasi-geodesic curves, and the other one on the symplectic Cayley transform. The resulting optimization algorithms are proved to converge globally to critical points of the objective function. Numerical experiments illustrate the efficiency of the proposed methods.
Riemannian optimization has drawn a lot of attention due to its wide applications in practice. Riemannian stochastic first-order algorithms have been studied in the literature to solve large-scale machine learning problems over Riemannian manifolds.
Strictly enforcing orthonormality constraints on parameter matrices has been shown advantageous in deep learning. This amounts to Riemannian optimization on the Stiefel manifold, which, however, is computationally expensive. To address this challenge
We introduce in this paper a manifold optimization framework that utilizes semi-Riemannian structures on the underlying smooth manifolds. Unlike in Riemannian geometry, where each tangent space is equipped with a positive definite inner product, a se
A graph $mathcal{G}$ is referred to as $mathsf{S}^1$-synchronizing if, roughly speaking, the Kuramoto-like model whose interaction topology is given by $mathcal{G}$ synchronizes almost globally. The Kuramoto model evolves on the unit circle, ie the $
We address the problem of computing the smallest symplectic eigenvalues and the corresponding eigenvectors of symmetric positive-definite matrices in the sense of Williamsons theorem. It is formulated as minimizing a trace cost function over the symp