ترغب بنشر مسار تعليمي؟ اضغط هنا

A search for fast radio burst-like emission from Fermi gamma-ray bursts

72   0   0.0 ( 0 )
 نشر من قبل Mieke Bouwhuis
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Mieke Bouwhuis




اسأل ChatGPT حول البحث

We report the results of the rapid follow-up observations of gamma-ray bursts (GRBs) detected by the Fermi satellite to search for associated fast radio bursts. The observations were conducted with the Australian Square Kilometre Array Pathfinder at frequencies from 1.2-1.4 GHz. A set of 20 bursts, of which four were short GRBs, were followed up with a typical latency of about one minute, for a duration of up to 11 hours after the burst. The data was searched using 4096 dispersion measure trials up to a maximum dispersion measure of 3763 pc cm$^{-3}$, and for pulse widths $w$ over a range of duration from 1.256 to 40.48 ms. No associated pulsed radio emission was observed above $26 {rm Jy ms} (w/1 {rm ms})^{-1/2}$ for any of the 20 GRBs.



قيم البحث

اقرأ أيضاً

Fast radio bursts (FRBs) are one of the most exciting new mysteries of astrophysics. Their origin is still unknown, but recent observations seems to link them to Soft Gamma Repeaters and, in particular, to magnetar giant flares (MGFs). The recent det ection of a MGF at GeV energies by the textit{Fermi} Large Area Telescope (LAT) motivated the search for GeV counterparts to the >100 currently known FRBs. Taking advantage of more than 12 years of textit{Fermi}-LAT data, we perform a search for gamma-ray emission from all the reported repeating and non-repeating FRBs. We analyse on different-time scales the textit{Fermi}-LAT data of each individual source separately, including a cumulative analysis on the repeating ones. In addition, we perform the first stacking analysis at GeV energies of this class of sources in order to constrain the gamma-ray properties of the FRBs that are undetected at high energies. The stacking analysis is a powerful method that allow a possible detection from below-threshold FRBs providing important information on these objects. In this talk we present the preliminary results of our study and we discuss their implications for the predictions of gamma-ray emission from this class of sources
The detection of six Fast Radio Bursts (FRBs) has recently been reported. FRBs are short duration ($sim$ 1 ms), highly dispersed radio pulses from astronomical sources. The physical interpretation for the FRBs remains unclear but is thought to involv e highly compact objects at cosmological distance. It has been suggested that a fraction of FRBs could be physically associated with gamma-ray bursts (GRBs). Recent radio observations of GRBs have reported the detection of two highly dispersed short duration radio pulses using a 12 m radio telescope at 1.4 GHz. Motivated by this result, we have performed a systematic and sensitive search for FRBs associated with GRBs. We have observed five GRBs at 2.3 GHz using a 26 m radio telescope located at the Mount Pleasant Radio Observatory, Hobart. The radio telescope was automated to rapidly respond to Gamma-ray Coordination Network notifications from the Swift satellite and slew to the GRB position within $sim$ 140 s. The data were searched for pulses up to 5000 pc $rm cm^{-3}$ in dispersion measure and pulse widths ranging from 640 $rm mu$s to 25.60 ms. We did not detect any events $rm geq 6 sigma$. An in-depth statistical analysis of our data shows that events detected above $rm 5 sigma$ are consistent with thermal noise fluctuations only. A joint analysis of our data with previous experiments shows that previously claimed detections of FRBs from GRBs are unlikely to be astrophysical. Our results are in line with the lack of consistency noted between the recently presented FRB event rates and GRB event rates.
We consider some general implications of bright gamma-ray counterparts to fast radio bursts (FRBs). We show that even if these manifest in only a fraction of FRBs, gamma-ray detections with current satellites (including Swift) can provide stringent c onstraints on cosmological FRB models. If the energy is drawn from the magnetic energy of a compact object such as a magnetized neutron star, the sources should be nearby and be very rare. If the intergalactic medium is responsible for the observed dispersion measure, the required gamma-ray energy is comparable to that of the early afterglow or extended emission of short gamma-ray bursts. While this can be reconciled with the rotation energy of compact objects, as expected in many merger scenarios, the prompt outflow that yields the gamma-rays is too dense for radio waves to escape. Highly relativistic winds launched in a precursor phase, and forming a wind bubble, may avoid the scattering and absorption limits and could yield FRB emission. Largely independent of source models, we show that detectable radio afterglow emission from gamma-ray bright FRBs can reasonably be anticipated. Gravitational wave searches can also be expected to provide useful tests.
Fast Radio Bursts (FRBs) are a mysterious flash phenomenon detected in radio wavelengths with a duration of only a few milliseconds, and they may also have prompt gamma-ray flashes. Here we carry out a blind search for msec-duration gamma-ray flashes using the 7-year Fermi Large Area Telescope (Fermi-LAT) all-sky gamma-ray data. About 100 flash candidates are detected, but after removing those associated with bright steady point sources, we find no flash events at high Galactic latitude region (|b|>20 deg). Events at lower latitude regions are consistent with statistical flukes originating from the diffuse gamma-ray background. From these results, we place an upper limit on the GeV gamma-ray to radio flux ratio of FRBs as xi equiv (nu L_nu)_gamma / (nu L_nu)_radio < 10^8, depending on the assumed FRB rate evolution. This limit is comparable with the largest value found for pulsars, though xi of pulsars is distributed in a wide range. We also compare this limit with the spectral energy distribution of the 2004 giant flare of the magnetar SGR 1806-20.
154 - C.J. Law 2019
We present results of a search for late-time radio emission and Fast Radio Bursts (FRBs) from a sample of type-I superluminous supernovae (SLSNe-I). We used the Karl G. Jansky Very Large Array to observe ten SLSN-I more than 5 years old at a frequenc y of 3 GHz. We searched fast-sampled visibilities for FRBs and used the same data to perform a deep imaging search for late-time radio emission expected in models of magnetar-powered supernovae. No FRBs were found. One SLSN-I, PTF10hgi, is detected in deep imaging, corresponding to a luminosity of $1.2times10^{28}$ erg s$^{-1}$. This luminosity, considered with the recent 6 GHz detection of PTF10hgi in Eftekhari et al (2019), supports the interpretation that it is powered by a young, fast-spinning ($sim$ ms spin period) magnetar with $sim$ 15 Msun of partially ionized ejecta. Broadly, our observations are most consistent with SLSNe-I being powered by neutron stars with fast spin periods, although most require more free-free absorption than is inferred for PTF10hgi. We predict that radio observations at higher frequencies or in the near future will detect these systems and begin constraining properties of the young pulsars and their birth environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا