ترغب بنشر مسار تعليمي؟ اضغط هنا

Memory-efficient Embedding for Recommendations

141   0   0.0 ( 0 )
 نشر من قبل Xiangyu Zhao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Practical large-scale recommender systems usually contain thousands of feature fields from users, items, contextual information, and their interactions. Most of them empirically allocate a unified dimension to all feature fields, which is memory inefficient. Thus it is highly desired to assign different embedding dimensions to different feature fields according to their importance and predictability. Due to the large amounts of feature fields and the nuanced relationship between embedding dimensions with feature distributions and neural network architectures, manually allocating embedding dimensions in practical recommender systems can be very difficult. To this end, we propose an AutoML based framework (AutoDim) in this paper, which can automatically select dimensions for different feature fields in a data-driven fashion. Specifically, we first proposed an end-to-end differentiable framework that can calculate the weights over various dimensions for feature fields in a soft and continuous manner with an AutoML based optimization algorithm; then we derive a hard and discrete embedding component architecture according to the maximal weights and retrain the whole recommender framework. We conduct extensive experiments on benchmark datasets to validate the effectiveness of the AutoDim framework.



قيم البحث

اقرأ أيضاً

Deep learning-based models are utilized to achieve state-of-the-art performance for recommendation systems. A key challenge for these models is to work with millions of categorical classes or tokens. The standard approach is to learn end-to-end, dens e latent representations or embeddings for each token. The resulting embeddings require large amounts of memory that blow up with the number of tokens. Training and inference with these models create storage, and memory bandwidth bottlenecks leading to significant computing and energy consumption when deployed in practice. To this end, we present the problem of textit{Memory Allocation} under budget for embeddings and propose a novel formulation of memory shared embedding, where memory is shared in proportion to the overlap in semantic information. Our formulation admits a practical and efficient randomized solution with Locality sensitive hashing based Memory Allocation (LMA). We demonstrate a significant reduction in the memory footprint while maintaining performance. In particular, our LMA embeddings achieve the same performance compared to standard embeddings with a 16$times$ reduction in memory footprint. Moreover, LMA achieves an average improvement of over 0.003 AUC across different memory regimes than standard DLRM models on Criteo and Avazu datasets
Deep learning based recommender systems (DLRSs) often have embedding layers, which are utilized to lessen the dimensionality of categorical variables (e.g. user/item identifiers) and meaningfully transform them in the low-dimensional space. The major ity of existing DLRSs empirically pre-define a fixed and unified dimension for all user/item embeddings. It is evident from recent researches that different embedding sizes are highly desired for different users/items according to their popularity. However, manually selecting embedding sizes in recommender systems can be very challenging due to the large number of users/items and the dynamic nature of their popularity. Thus, in this paper, we propose an AutoML based end-to-end framework (AutoEmb), which can enable various embedding dimensions according to the popularity in an automated and dynamic manner. To be specific, we first enhance a typical DLRS to allow various embedding dimensions; then we propose an end-to-end differentiable framework that can automatically select different embedding dimensions according to user/item popularity; finally we propose an AutoML based optimization algorithm in a streaming recommendation setting. The experimental results based on widely used benchmark datasets demonstrate the effectiveness of the AutoEmb framework.
Recommender systems are an essential component of e-commerce marketplaces, helping consumers navigate massive amounts of inventory and find what they need or love. In this paper, we present an approach for generating personalized item recommendations in an e-commerce marketplace by learning to embed items and users in the same vector space. In order to alleviate the considerable cold-start problem present in large marketplaces, item and user embeddings are computed using content features and multi-modal onsite user activity respectively. Data ablation is incorporated into the offline model training process to improve the robustness of the production system. In offline evaluation using a dataset collected from eBay traffic, our approach was able to improve the Recall@k metric over the Recently-Viewed-Item (RVI) method. This approach to generating personalized recommendations has been launched to serve production traffic, and the corresponding scalable engineering architecture is also presented. Initial A/B test results show that compared to the current personalized recommendation module in production, the proposed method increases the surface rate by $sim$6% to generate recommendations for 90% of listing page impressions.
107 - Wenqi Fan , Xiaorui Liu , Wei Jin 2021
Recommender systems aim to provide personalized services to users and are playing an increasingly important role in our daily lives. The key of recommender systems is to predict how likely users will interact with items based on their historical onli ne behaviors, e.g., clicks, add-to-cart, purchases, etc. To exploit these user-item interactions, there are increasing efforts on considering the user-item interactions as a user-item bipartite graph and then performing information propagation in the graph via Graph Neural Networks (GNNs). Given the power of GNNs in graph representation learning, these GNN-based recommendation methods have remarkably boosted the recommendation performance. Despite their success, most existing GNN-based recommender systems overlook the existence of interactions caused by unreliable behaviors (e.g., random/bait clicks) and uniformly treat all the interactions, which can lead to sub-optimal and unstable performance. In this paper, we investigate the drawbacks (e.g., non-adaptive propagation and non-robustness) of existing GNN-based recommendation methods. To address these drawbacks, we propose the Graph Trend Networks for recommendations (GTN) with principled designs that can capture the adaptive reliability of the interactions. Comprehensive experiments and ablation studies are presented to verify and understand the effectiveness of the proposed framework. Our implementation and datasets can be released after publication.
With the recent prevalence of Reinforcement Learning (RL), there have been tremendous interests in developing RL-based recommender systems. In practical recommendation sessions, users will sequentially access multiple scenarios, such as the entrance pages and the item detail pages, and each scenario has its specific characteristics. However, the majority of existing RL-based recommender systems focus on optimizing one strategy for all scenarios or separately optimizing each strategy, which could lead to sub-optimal overall performance. In this paper, we study the recommendation problem with multiple (consecutive) scenarios, i.e., whole-chain recommendations. We propose a multi-agent RL-based approach (DeepChain), which can capture the sequential correlation among different scenarios and jointly optimize multiple recommendation strategies. To be specific, all recommender agents (RAs) share the same memory of users historical behaviors, and they work collaboratively to maximize the overall reward of a session. Note that optimizing multiple recommendation strategies jointly faces two challenges in the existing model-free RL model - (i) it requires huge amounts of user behavior data, and (ii) the distribution of reward (users feedback) are extremely unbalanced. In this paper, we introduce model-based RL techniques to reduce the training data requirement and execute more accurate strategy updates. The experimental results based on a real e-commerce platform demonstrate the effectiveness of the proposed framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا