ﻻ يوجد ملخص باللغة العربية
We present results from the KMOS Lens-Amplified Spectroscopic Survey (KLASS), an ESO Very Large Telescope (VLT) large program using gravitational lensing to study the spatially resolved kinematics of 44 star-forming galaxies at 0.6<z<2.3 with a stellar mass of 8.1<log(M$_star$/M$_{odot}$)<11.0. These galaxies are located behind six galaxy clusters selected from the HST Grism Lens-Amplified Survey from Space (GLASS). We find that the majority of the galaxies show a rotating disk, but most of the rotation-dominated galaxies only have a low $upsilon_{rot}/sigma_0$ ratio (median of $upsilon_{rot}/sigma_0sim2.5$). We explore the Tully-Fisher relation by adopting the circular velocity, $V_{circ}=(upsilon_{rot}^2+3.4sigma_0^2)^{1/2}$, to account for pressure support. We find that our sample follows a Tully-Fisher relation with a positive zero-point offset of +0.18 dex compared to the local relation, consistent with more gas-rich galaxies that still have to convert most of their gas into stars. We find a strong correlation between the velocity dispersion and stellar mass in the KLASS sample. When combining our data to other surveys from the literature, we also see an increase of the velocity dispersion with stellar mass at all redshift. We obtain an increase of $upsilon_{rot}/sigma_0$ with stellar mass at 0.5<z<1.0. This could indicate that massive galaxies settle into regular rotating disks before the low-mass galaxies. For higher redshift (z>1), we find a weak increase or flat trend. We investigate the relation between the rest-frame UV clumpiness of galaxies and their global kinematic properties. We find no clear trend between the clumpiness and the velocity dispersion and $upsilon_{rot}/sigma_0$. This could suggest that the kinematic properties of galaxies evolve after the clumps formed in the galaxy disk or that the clumps can form in different physical conditions.
We present the first results of the KMOS Lens-Amplified Spectroscopic Survey (KLASS), a new ESO Very Large Telescope (VLT) large program, doing multi-object integral field spectroscopy of galaxies gravitationally lensed behind seven galaxy clusters s
Detections and non-detections of Lyman alpha (Ly$alpha$) emission from $z>6$ galaxies ($<1$ Gyr after the Big Bang) can be used to measure the timeline of cosmic reionization. Of key interest to measuring reionizations mid-stages, but also increasing
We introduce the OSIRIS Lens-Amplified Survey (OLAS), a kinematic survey of gravitationally lensed galaxies at cosmic noon taken with Keck adaptive optics. In this paper we present spatially resolved spectroscopy and nebular emission kinematic maps f
The MAMMOTH-Grism slitless spectroscopic survey is a Hubble Space Telescope (HST) cycle-28 medium program, which is obtaining 45 orbits of WFC3/IR grism spectroscopy in the density peak regions of three massive galaxy protoclusters at $z=2-3$ discove
(Abridged) We combine deep HST grism spectroscopy with a new Bayesian method to derive maps of gas-phase metallicity, nebular dust extinction, and star-formation rate for 10 star-forming galaxies at high redshift ($1.2<z<2.3$). Exploiting lensing mag