ﻻ يوجد ملخص باللغة العربية
We describe a first open-access database of experimentally investigated hybrid organic-inorganic materials with two-dimensional (2D) perovskite-like crystal structure. The database includes 515 compounds, containing 180 different organic cations, 10 metals (Pb, Sn, Bi, Cd, Cu, Fe, Ge, Mn, Pd, Sb) and 3 halogens (I, Br, Cl) known so far and will be regularly updated. The database contains a geometrical and crystal chemical analysis of the structures, which are useful to reveal quantitative structure-property relationships for this class of compounds. We show that the penetration depth of spacer organic cation into the inorganic layer and M-X-M bond angles increase in the number of inorganic layers (n). The machine learning model is developed and trained on the database, for the prediction of a band gap with accuracy within 0.1 eV. Another machine learning model is trained for the prediction of atomic partial charges with accuracy within 0.01 e. We show that the predicted values of band gaps decrease with an increase of the n and with an increase of M-X-M angles for single-layered perovskites. In general, the proposed database and machine learning models are shown to be useful tools for the rational design of new 2D hybrid perovskite materials.
We report the computational investigation of a series of ternary X$_4$Y$_2$Z and X$_5$Y$_2$Z$_2$ compounds with X={Mg, Ca, Sr, Ba}, Y={P, As, Sb, Bi}, and Z={S, Se, Te}. The compositions for these materials were predicted through a search guided by m
Transition metal nitrides have been suggested to have both high hardness and good thermal stability with large potential application value, but so far stable superhard transition metal nitrides have not been synthesized. Here, with our newly develope
With their broad range of magnetic, electronic and structural properties, transition metal perovskite oxides ABO3 have long served as a platform for testing condensed matter theories. In particular, their insulating character - found in most compound
Drive towards improved performance of machine learning models has led to the creation of complex features representing a database of condensed matter systems. The complex features, however, do not offer an intuitive explanation on which physical attr
The C2DB is a highly curated open database organizing a wealth of computed properties for more than 4000 atomically thin two-dimensional (2D) materials. Here we report on new materials and properties that were added to the database since its first re