ﻻ يوجد ملخص باللغة العربية
We examine two key questions in GAN training, namely overfitting and mode drop, from an empirical perspective. We show that when stochasticity is removed from the training procedure, GANs can overfit and exhibit almost no mode drop. Our results shed light on important characteristics of the GAN training procedure. They also provide evidence against prevailing intuitions that GANs do not memorize the training set, and that mode dropping is mainly due to properties of the GAN objective rather than how it is optimized during training.
Our goal is to understand why the robustness drops after conducting adversarial training for too long. Although this phenomenon is commonly explained as overfitting, our analysis suggest that its primary cause is perturbation underfitting. We observe
Generative adversarial networks (GAN) have shown remarkable results in image generation tasks. High fidelity class-conditional GAN methods often rely on stabilization techniques by constraining the global Lipschitz continuity. Such regularization lea
We propose self-adaptive training---a new training algorithm that dynamically corrects problematic training labels by model predictions without incurring extra computational cost---to improve generalization of deep learning for potentially corrupted
Tuning machine learning models with Bayesian optimization (BO) is a successful strategy to find good hyperparameters. BO defines an iterative procedure where a cross-validated metric is evaluated on promising hyperparameters. In practice, however, an
Despite success on a wide range of problems related to vision, generative adversarial networks (GANs) often suffer from inferior performance due to unstable training, especially for text generation. To solve this issue, we propose a new variational G