ﻻ يوجد ملخص باللغة العربية
A means to extract the fine-structure constant $alpha$ from precision spectroscopic data on one-electron ions is presented. We show that in an appropriately weighted difference of the bound-electron $g$ factor and the ground state energy, nuclear structural effects can be effectively suppressed. This method is anticipated to deliver an independent value of $alpha$ via existing or near-future combined Penning trap and x-ray spectroscopic technology, and enables decreasing the uncertainty of $alpha$ by orders of magnitude.
Radio-frequency electric-dipole transitions between nearly degenerate, opposite parity levels of atomic dysprosium (Dy) were monitored over an eight-month period to search for a variation in the fine-structure constant, $alpha$. The data provide a ra
Radio-frequency E1 transitions between nearly degenerate, opposite parity levels of atomic dysprosium were monitored over an eight month period to search for a variation in the fine-structure constant. During this time period, data were taken at diff
We study electronic transitions in highly-charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, alpha. The transitions are in the optical despite t
Measurements of the fine-structure constant alpha require methods from across subfields and are thus powerful tests of the consistency of theory and experiment in physics. Using the recoil frequency of cesium-133 atoms in a matter-wave interferometer
A weighted difference of the $g$-factors of the Li- and H-like ion of the same element is studied and optimized in order to maximize the cancellation of nuclear effects. To this end, a detailed theoretical investigation is performed for the finite nu