ﻻ يوجد ملخص باللغة العربية
The advanced magnetic resonance (MR) image reconstructions such as the compressed sensing and subspace-based imaging are considered as large-scale, iterative, optimization problems. Given the large number of reconstructions required by the practical clinical usage, the computation time of these advanced reconstruction methods is often unacceptable. In this work, we propose using Googles Tensor Processing Units (TPUs) to accelerate the MR image reconstruction. TPU is an application-specific integrated circuit (ASIC) for machine learning applications, which has recently been used to solve large-scale scientific computing problems. As proof-of-concept, we implement the alternating direction method of multipliers (ADMM) in TensorFlow to reconstruct images on TPUs. The reconstruction is based on multi-channel, sparsely sampled, and radial-trajectory $k$-space data with sparsity constraints. The forward and inverse non-uniform Fourier transform operations are formulated in terms of matrix multiplications as in the discrete Fourier transform. The sparsifying transform and its adjoint operations are formulated as convolutions. The data decomposition is applied to the measured $k$-space data such that the aforementioned tensor operations are localized within individual TPU cores. The data decomposition and the inter-core communication strategy are designed in accordance with the TPU interconnect network topology in order to minimize the communication time. The accuracy and the high parallel efficiency of the proposed TPU-based image reconstruction method are demonstrated through numerical examples.
The rapid evolution of artificial intelligence (AI) is leading to a new generation of hardware accelerators optimized for deep learning. Some of the designs of these accelerators are general enough to allow their use for other computationally intensi
Multi-contrast MRI images provide complementary contrast information about the characteristics of anatomical structures and are commonly used in clinical practice. Recently, a multi-flip-angle (FA) and multi-echo GRE method (MULTIPLEX MRI) has been d
We propose a k-space preconditioning formulation for accelerating the convergence of iterative Magnetic Resonance Imaging (MRI) reconstructions from non-uniformly sampled k-space data. Existing methods either use sampling density compensations which
In this work we introduce a new method that combines Parallel MRI and Compressed Sensing (CS) for accelerated image reconstruction from subsampled k-space data. The method first computes a convolved image, which gives the convolution between a user-d
Optimizing k-space sampling trajectories is a challenging topic for fast magnetic resonance imaging (MRI). This work proposes to optimize a reconstruction algorithm and sampling trajectories jointly concerning image reconstruction quality. We paramet