ﻻ يوجد ملخص باللغة العربية
Light dark sectors in thermal contact with the Standard Model naturally produce the observed relic dark matter abundance and are the targets of a broad experimental search program. A key light dark sector model is the pseudo-Dirac fermion with a dark photon mediator. The dynamics of the fermionic excited states are often neglected. We consider scenarios in which a nontrivial abundance of excited states is produced and their subsequent de-excitation yields interesting electromagnetic signals in direct detection experiments. We study three mechanisms of populating the excited state: a primordial excited fraction, a component up-scattered in the sun, and a component up-scattered in the Earth. We find that the fractional abundance of primordial excited states is generically depleted to exponentially small fractions in the early universe. Nonetheless, this abundance can produce observable signals in current dark matter searches. MeV-scale dark matter with thermal cross sections and higher can be probed by down-scattering following excitation in the sun. Up-scatters of GeV-scale dark matter in the Earth can give rise to signals in current and upcoming terrestrial experiments and X-ray observations. We comment on the possible relevance of these scenarios to the recent excess in XENON1T.
We report the results of a search for the inelastic scattering of weakly interacting massive particles (WIMPs) in the XENON1T dark matter experiment. Scattering off $^{129}$Xe is the most sensitive probe of inelastic WIMP interactions, with a signatu
We study luminous dark matter signals in models with inelastic scattering. Dark matter $chi_1$ that scatters inelastically off elements in the Earth is kicked into an excited state $chi_2$ that can subsequently decay into a monoenergetic photon insid
Composite dark matter is a natural setting for implementing inelastic dark matter - the O(100 keV) mass splitting arises from spin-spin interactions of constituent fermions. In models where the constituents are charged under an axial U(1) gauge symme
We investigate different neutrino signals from the decay of dark matter particles to determine the prospects for their detection, and more specifically if any spectral signature can be disentangled from the background in present and future neutrino o
We study the stochastic background of gravitational waves which accompany the sudden freeze-out of dark matter triggered by a cosmological first order phase transition that endows dark matter with mass. We consider models that produce the measured da