ﻻ يوجد ملخص باللغة العربية
Constructing effective image priors is critical to solving ill-posed inverse problems in image processing and imaging. Recent works proposed to exploit image non-local similarity for inverse problems by grouping similar patches and demonstrated state-of-the-art results in many applications. However, compared to classic methods based on filtering or sparsity, most of the non-local algorithms are time-consuming, mainly due to the highly inefficient and redundant block matching step, where the distance between each pair of overlapping patches needs to be computed. In this work, we propose a novel Self-Convolution operator to exploit image non-local similarity in a self-supervised way. The proposed Self-Convolution can generalize the commonly-used block matching step and produce equivalent results with much cheaper computation. Furthermore, by applying Self-Convolution, we propose an effective multi-modality image restoration scheme, which is much more efficient than conventional block matching for non-local modeling. Experimental results demonstrate that (1) Self-Convolution can significantly speed up most of the popular non-local image restoration algorithms, with two-fold to nine-fold faster block matching, and (2) the proposed multi-modality image restoration scheme achieves superior denoising results in both efficiency and effectiveness on RGB-NIR images. The code is publicly available at href{https://github.com/GuoLanqing/Self-Convolution}.
In this paper, we propose a residual non-local attention network for high-quality image restoration. Without considering the uneven distribution of information in the corrupted images, previous methods are restricted by local convolutional operation
The convolution operation is a powerful tool for feature extraction and plays a prominent role in the field of computer vision. However, when targeting the pixel-wise tasks like image fusion, it would not fully perceive the particularity of each pixe
This paper proposes using a Gaussian mixture model as a prior, for solving two image inverse problems, namely image deblurring and compressive imaging. We capitalize on the fact that variable splitting algorithms, like ADMM, are able to decouple the
It is a challenging task to restore images from their variants with combined distortions. In the existing works, a promising strategy is to apply parallel operations to handle different types of distortion. However, in the feature fusion phase, a sma
Recently, much attention has been spent on neural architecture search (NAS) approaches, which often outperform manually designed architectures on highlevel vision tasks. Inspired by this, we attempt to leverage NAS technique to automatically design e